IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v65y2012icp124-129.html
   My bibliography  Save this article

Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs

Author

Listed:
  • Moreira Neto, Ronan Fernandes
  • Calijuri, Maria Lúcia
  • Carvalho, Isabella de Castro
  • Santiago, Aníbal da Fonseca

Abstract

Water scarcity is a reality worldwide, either by quantitative or qualitative unavailability. The search for alternative water sources, water reuse and other mechanisms for its rational use is a global trend. Considering these facts, rainwater use is an interesting alternative to complement non-potable demand in locations such as airport complexes. These environments present large roof areas and support different activities which consume non-potable water, making them potential sites for the installation of rainwater use systems. The objectives of this research were to assess rainwater quality in an airport environment, study the performance of slow sand filtration followed by chlorination in the treatment of rainwater and analyze treatment costs. The study was carried out in a mid-size airport in Brazil. The proposed system provided water with physical, chemical and microbiological quality consistent with recommendations for reuse and the price per treated cubic meter was 60% lower than the price paid to the current water supply company.

Suggested Citation

  • Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
  • Handle: RePEc:eee:recore:v:65:y:2012:i:c:p:124-129
    DOI: 10.1016/j.resconrec.2012.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912000857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Matthew P. & Hunt, William F., 2010. "Performance of rainwater harvesting systems in the southeastern United States," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 623-629.
    2. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    2. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    3. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    4. do Couto, Eduardo de Aguiar & Calijuri, Maria Lúcia & Assemany, Paula Peixoto & Santiago, Aníbal da Fonseca & Carvalho, Isabella de Castro, 2013. "Greywater production in airports: Qualitative and quantitative assessment," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 44-51.
    5. Glenn Baxter & Panarat Srisaeng & Graham Wild, 2019. "An Assessment of Airport Sustainability: Part 3—Water Management at Copenhagen Airport," Resources, MDPI, vol. 8(3), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proença, Lúcio Costa & Ghisi, Enedir & Tavares, Davi da Fonseca & Coelho, Gabriel Marcon, 2011. "Potential for electricity savings by reducing potable water consumption in a city scale," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 960-965.
    2. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    3. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    4. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    5. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    6. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    7. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    8. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    9. Monika Zdeb & Justyna Zamorska & Dorota Papciak & Daniel Słyś, 2020. "The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use," Resources, MDPI, vol. 9(2), pages 1-17, January.
    10. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    11. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    12. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    13. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    14. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    15. Karolina Fitobór & Bernard Quant, 2021. "Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater?," Resources, MDPI, vol. 10(3), pages 1-16, March.
    16. Puppala, Harish & Ahuja, Jaya & Tamvada, Jagannadha Pawan & Peddinti, Pranav R T, 2023. "New technology adoption in rural areas of emerging economies: The case of rainwater harvesting systems in India," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    17. Abedin Mohammad-Hosseinpour & José-Luis Molina, 2022. "Improving the Sustainability of Urban Water Management through Innovative Groundwater Recharge System (GRS)," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    18. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    19. Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
    20. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:65:y:2012:i:c:p:124-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.