IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v62y2012icp51-55.html
   My bibliography  Save this article

Rainwater harvesting potential for southwest Nigeria using daily water balance model

Author

Listed:
  • Imteaz, Monzur Alam
  • Adeboye, Omotayo B.
  • Rayburg, Scott
  • Shanableh, Abdallah

Abstract

For the performance analysis and design of rainwater tanks, a simple spreadsheet based daily water balance model was developed using daily rainfall data, contributing roof area, rainfall loss factor, available storage volume, tank overflow and rainwater demand. This water balance model was then used to design an optimum size of domestic rainwater tank to be used for southwest Nigeria. The optimisation criterion was set to provide uninterrupted intended demand from the selected rainwater tank during the critical (dry) months. For the tank water, two demand scenarios were assessed: (i) toilet flushing only; and (ii) toilet flushing and laundry use. Analysis was performed for a typical dry year (1998) in southwest Nigeria. Current analysis outcomes were compared with an earlier analysis using monthly average rainfall data. It is found that analysis using monthly average rainfall data overestimates the required rainwater tank size. In addition, the newly developed model was used to assess the reliability of domestic rainwater tanks in augmenting partial household water demand. This analysis showed that a reliability of 100% is possible to achieve with a tank size of 7000L under low demand. However, with higher demand a bigger tank size (∼10,000L) is required to achieve 100% reliability even though very high reliability could also be attained with a tank size of 7000L. From overflow analysis, the results of this study showed that a large quantity of water is lost as overflow, even in a dry year with a tank size of 10,000L. Thus, harvested rainwater could be used for other purposes if larger tanks are used as these would capture more of the excess rainwater which could then be tasked to other purposes without compromising the reliability of water availability for primary uses.

Suggested Citation

  • Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
  • Handle: RePEc:eee:recore:v:62:y:2012:i:c:p:51-55
    DOI: 10.1016/j.resconrec.2012.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912000341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eroksuz, Erhan & Rahman, Ataur, 2010. "Rainwater tanks in multi-unit buildings: A case study for three Australian cities," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1449-1452.
    2. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
    4. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    5. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    2. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    4. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    5. Santos, C. & Taveira-Pinto, F., 2013. "Analysis of different criteria to size rainwater storage tanks using detailed methods," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 1-6.
    6. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    7. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    8. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    9. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    10. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.
    11. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    2. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    3. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    4. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    5. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    6. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    7. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    8. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    9. Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
    10. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    11. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    12. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    13. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    14. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    15. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    16. Moniruzzaman, Muhammad & Imteaz, Monzur A., 2017. "Generalized equations, climatic and spatial variabilities of potential rainwater savings: A case study for Sydney," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 139-156.
    17. Farreny, R. & Gabarrell, X. & Rieradevall, J., 2011. "Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 686-694.
    18. Ghisi, Enedir & Rupp, Ricardo Forgiarini & Triska, Yuri, 2014. "Comparing indicators to rank strategies to save potable water in buildings," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 137-144.
    19. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    20. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:62:y:2012:i:c:p:51-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.