IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v56y2011i1p80-86.html
   My bibliography  Save this article

Reliability analysis of rainwater tanks in Melbourne using daily water balance model

Author

Listed:
  • Imteaz, Monzur Alam
  • Ahsan, Amimul
  • Naser, Jamal
  • Rahman, Ataur

Abstract

With the aim of developing a comprehensive decision support tool for the performance analysis and design of rainwater tanks, a simple spreadsheet based daily water balance model was developed using daily rainfall data, contributing roof area, rainfall loss factor, available storage volume, tank overflow and rainwater demand. In order to assess reliability of domestic rainwater tanks in augmenting partial household water demand in Melbourne (Australia) area, the developed water balance model was used for three different climatic conditions (i.e. dry, average, and wet years). Historical daily rainfall data was collected from a rainfall station near Melbourne city central. From historical rainfall data three representative years (driest, average and wettest) were selected for the current analysis. Reliability is defined as percentage of days in a year when rainwater tank was able to supply the intended partial demand for a particular condition. For the three climatic conditions, several reliability charts are presented for domestic rainwater tanks in relations to tank volume, roof area, number of people in a house (i.e. water demand) and percentage of total water demand to be satisfied by harvested rainwater. In brief, for a two-people household scenario, ∼100% reliability can be achieved with a roof size of 150–300m2 having a tank size of 5000–10,000L. However, for a four-people household scenario, it is not possible to achieve a 100% reliability, even with a roof size of 300m2 and a tank size of 10,000L.

Suggested Citation

  • Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
  • Handle: RePEc:eee:recore:v:56:y:2011:i:1:p:80-86
    DOI: 10.1016/j.resconrec.2011.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911001790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    2. Eroksuz, Erhan & Rahman, Ataur, 2010. "Rainwater tanks in multi-unit buildings: A case study for three Australian cities," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1449-1452.
    3. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Kassem & Hüseyin Gökçekuş & Aşkın Kiraz & Abdalla Hamada Abdelnaby Abdelnaby, 2025. "Integrating Rainwater Harvesting and Solar Energy Systems for Sustainable Water and Energy Management in Low Rainfall Agricultural Region: A Case Study from Gönyeli, Northern Cyprus," Sustainability, MDPI, vol. 17(18), pages 1-42, September.
    2. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    3. Nguyen, Duc Canh & Han, Moo Young, 2017. "Proposal of simple and reasonable method for design of rainwater harvesting system from limited rainfall data," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 219-227.
    4. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    5. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    6. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    7. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    8. Ali, Shahbaz & Sang, Yan-Fang & Pilla, Francesco & Singh, Vijay P. & Dilawar, Adil, 2025. "Implementing urban rainwater harvesting systems: Multiple potential performances, barriers, challenges, solutions, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    9. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    10. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    11. Moniruzzaman, Muhammad & Imteaz, Monzur A., 2017. "Generalized equations, climatic and spatial variabilities of potential rainwater savings: A case study for Sydney," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 139-156.
    12. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    2. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    3. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    4. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    5. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    6. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    7. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    8. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    9. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    10. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    11. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.
    12. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.
    13. Farreny, R. & Gabarrell, X. & Rieradevall, J., 2011. "Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 686-694.
    14. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    15. Chen Shiguang & Zeng Haoxin & Sun Hongwei & Liu Song & Yang Yongmin, 2024. "How to determine the cistern volume of rainwater harvesting system: an analytical solution based on roof areas and water demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20413-20438, August.
    16. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    17. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    18. Youn, Seok-goo & Chung, Eun-Sung & Kang, Won Gu & Sung, Jang Hyun, 2012. "Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 136-144.
    19. Karolina Fitobór & Bernard Quant, 2021. "Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater?," Resources, MDPI, vol. 10(3), pages 1-16, March.
    20. Agnieszka Stec & Daniel Słyś & Przemysław Ogarek & Kacper Bednarz & Izabela Bartkowska & Joanna Gwoździej-Mazur & Małgorzata Iwanek & Beata Kowalska, 2024. "Assessment of Possibilities of Using Local Renewable Resources in Road Infrastructure Facilities—A Case Study from Poland," Energies, MDPI, vol. 17(24), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:56:y:2011:i:1:p:80-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.