IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v77y2013icp44-51.html
   My bibliography  Save this article

Greywater production in airports: Qualitative and quantitative assessment

Author

Listed:
  • do Couto, Eduardo de Aguiar
  • Calijuri, Maria Lúcia
  • Assemany, Paula Peixoto
  • Santiago, Aníbal da Fonseca
  • Carvalho, Isabella de Castro

Abstract

Airport complexes are great water consumers where the adoption of reuse practices adapted to their particular characteristics may represent significant savings of financial and environmental resources. Greywater reuse is an important alternative for reducing potable water consumption in airports. The objective of this study was to assess the quality of greywater produced in airport environments and the reuse potential of such effluent. This study was developed in a mid-size airport in Brazil, where a qualitative assessment of greywater produced by different activities was performed. The results were analyzed using descriptive and multivariate statistics. Greywater production in the administrative buildings was estimated by the application of questionnaires and interviewing employees, and compared to the non-potable demand in these buildings. The results showed that the quality of the greywater produced in the airport is similar to that produced in residences and can be easily treated for reuse purposes. In quantitative terms, greywater reuse can meet the non-potable demand and provide great savings of water and financial resources, in addition to priceless environmental benefits.

Suggested Citation

  • do Couto, Eduardo de Aguiar & Calijuri, Maria Lúcia & Assemany, Paula Peixoto & Santiago, Aníbal da Fonseca & Carvalho, Isabella de Castro, 2013. "Greywater production in airports: Qualitative and quantitative assessment," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 44-51.
  • Handle: RePEc:eee:recore:v:77:y:2013:i:c:p:44-51
    DOI: 10.1016/j.resconrec.2013.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913001134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dima Nazer & Maarten Siebel & Pieter Van der Zaag & Ziad Mimi & Huub Gijzen, 2010. "A Financial, Environmental and Social Evaluation of Domestic Water Management Options in the West Bank, Palestine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4445-4467, December.
    2. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    3. Yan Zhang & Andrew Grant & Ashok Sharma & Donghui Chen & Liang Chen, 2010. "Alternative Water Resources for Rural Residential Development in Western Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 25-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanen Filali & Narcis Barsan & Dalila Souguir & Valentin Nedeff & Claudia Tomozei & Mohamed Hachicha, 2022. "Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review," Sustainability, MDPI, vol. 14(2), pages 1-13, January.
    2. Hocaoglu, Selda Murat, 2017. "Evaluations of on-site wastewater reuse alternatives for hotels through water balance," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 43-50.
    3. Lin, Wen-Shyong & Lee, Mengshan & Huang, Yu-Cheng & Den, Walter, 2015. "Identifying water recycling strategy using multivariate statistical analysis for high-tech industries in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 35-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dima Nazer & Maarten Siebel & Pieter Van der Zaag & Ziad Mimi & Huub Gijzen, 2010. "A Financial, Environmental and Social Evaluation of Domestic Water Management Options in the West Bank, Palestine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4445-4467, December.
    2. Aditi Mankad & Meng Chong & Ted Gardner & Ashok Sharma, 2012. "Examining Biophysical and Socio-Demographic Factors across Mandated Tank Users in Urban Australia: A Linking Step towards Achieving Best Practices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1983-1998, May.
    3. Moreira Neto, Ronan Fernandes & Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Santiago, Aníbal da Fonseca, 2012. "Rainwater use in airports: A case study in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 36-43.
    4. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    5. Greg Barrett & Margaret Wallace, 2011. "An Institutional Economics Perspective: The Impact of Water Provider Privatisation on Water Conservation in England and Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1325-1340, March.
    6. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    7. Glenn Baxter & Panarat Srisaeng & Graham Wild, 2019. "An Assessment of Airport Sustainability: Part 3—Water Management at Copenhagen Airport," Resources, MDPI, vol. 8(3), pages 1-24, July.
    8. Shiguang Chen & Hongwei Sun & Qiuli Chen & Song Liu & Xuebin Chen, 2023. "An Innovative Approach to Predicting the Financial Prospects of a Rainwater Harvesting System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3169-3185, June.
    9. Thulo Ram Gurung & Rodney A. Stewart & Cara D. Beal & Ashok K. Sharma, 2016. "Investigating the Financial Implications and Viability of Diversified Water Supply Systems in an Urban Water Supply Zone," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4037-4051, September.
    10. Sonia Martínez & Jerónimo Pérez-Parra & Ricardo Suay, 2011. "Use of Ozone in Wastewater Treatment to Produce Water Suitable for Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2109-2124, July.
    11. Md. Islam & F. Chou & M. Kabir & C. Liaw, 2010. "Rainwater: A Potential Alternative Source for Scarce Safe Drinking and Arsenic Contaminated Water in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3987-4008, November.
    12. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    13. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.
    14. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    15. C. Vialle & C. Sablayrolles & M. Lovera & M.-C. Huau & S. Jacob & M. Montrejaud-Vignoles, 2012. "Water Quality Monitoring and Hydraulic Evaluation of a Household Roof Runoff Harvesting System in France," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2233-2241, June.
    16. Yongsheng Wang & Xiao Cui & Xinrong Zhang & Qi Wen, 2022. "Exploring the Sustainable Use Strategy of Scarce Water Resources for Rural Revitalization in Yanchi County from Arid Region of Northwest China," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    17. Vieira, Abel S. & Beal, Cara D. & Ghisi, Enedir & Stewart, Rodney A., 2014. "Energy intensity of rainwater harvesting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 225-242.
    18. Anirban Khastagir & Niranjali Jayasuriya, 2011. "Investment Evaluation of Rainwater Tanks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3769-3784, November.
    19. Xueping Gao & Lingling Chen & Bowen Sun & Yinzhu Liu, 2017. "Employing SWOT Analysis and Normal Cloud Model for Water Resource Sustainable Utilization Assessment and Strategy Development," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    20. Weihua Zhang & Chaofu Wei & Jia Zhou, 2010. "Optimal Allocation of Rainfall in the Sichuan Basin, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4529-4549, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:77:y:2013:i:c:p:44-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.