IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v231y2021ics0925527320302401.html
   My bibliography  Save this article

A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management

Author

Listed:
  • Caiado, Rodrigo Goyannes Gusmão
  • Scavarda, Luiz Felipe
  • Gavião, Luiz Octávio
  • Ivson, Paulo
  • Nascimento, Daniel Luiz de Mattos
  • Garza-Reyes, Jose Arturo

Abstract

Industry 4.0 (I4.0) aims to link disruptive technologies to manufacturing systems, combining smart operations and supply chain management (OSCM). Maturity models (MMs) are valuable methodologies to assist manufacturing organizations to track the progress of their I4.0 initiatives and guide digitalization. However, there is a lack of empirical work on the development of I4.0 MMs with clear guidelines for OSCM digitalization. There is no I4.0 MM with an assessment tool that addresses the imprecision brought by human judgment and the uncertainty and ambiguity inherent to OSCM evaluation. Here we develop a fuzzy logic-based I4.0 MM for OSCM, through a transparent and rigorous procedure, built on a multi-method approach comprising a literature review, interviews, focus groups and case study, from model design to model evaluation. To provide a more realistic evaluation, fuzzy logic and Monte Carlo simulation are incorporated into an I4.0 self-assessment readiness-tool, which is connected with the model architecture. The proposed model has been validated through a real application in a multinational manufacturing organization. The results indicate that the approach provides a robust and practical diagnostic tool, based on a set of OSCM indicators to measure digital readiness of manufacturing industries. It supports the transition towards I4.0 in OSCM domain, by holistically analyzing gaps and prescribing actions that can be taken to increase their OSCM4.0 maturity level.

Suggested Citation

  • Caiado, Rodrigo Goyannes Gusmão & Scavarda, Luiz Felipe & Gavião, Luiz Octávio & Ivson, Paulo & Nascimento, Daniel Luiz de Mattos & Garza-Reyes, Jose Arturo, 2021. "A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management," International Journal of Production Economics, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302401
    DOI: 10.1016/j.ijpe.2020.107883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320302401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huaiqing Wang & Kun Chen & Dongming Xu, 2016. "A maturity model for blockchain adoption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-5, December.
    2. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    3. Osiro, Lauro & Lima-Junior, Francisco R. & Carpinetti, Luiz Cesar R., 2014. "A fuzzy logic approach to supplier evaluation for development," International Journal of Production Economics, Elsevier, vol. 153(C), pages 95-112.
    4. Angelica Cuylen & Lubov Kosch & Michael H. Breitner, 2016. "Development of a maturity model for electronic invoice processes," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(2), pages 115-127, May.
    5. Yuquan Meng & Yuhang Yang & Haseung Chung & Pil-Ho Lee & Chenhui Shao, 2018. "Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    6. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    7. Mendes, Paulo & Leal, José Eugênio & Thomé, Antônio Márcio Tavares, 2016. "A maturity model for demand-driven supply chains in the consumer product goods industry," International Journal of Production Economics, Elsevier, vol. 179(C), pages 153-165.
    8. Frank, Alejandro Germán & Dalenogare, Lucas Santos & Ayala, Néstor Fabián, 2019. "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, Elsevier, vol. 210(C), pages 15-26.
    9. Azadegan, Arash & Porobic, Lejla & Ghazinoory, Sepehr & Samouei, Parvaneh & Saman Kheirkhah, Amir, 2011. "Fuzzy logic in manufacturing: A review of literature and a specialized application," International Journal of Production Economics, Elsevier, vol. 132(2), pages 258-270, August.
    10. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.
    11. Jörg Becker & Ralf Knackstedt & Jens Pöppelbuß, 2009. "Developing Maturity Models for IT Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(3), pages 213-222, June.
    12. Dimitris Mourtzis & Sophia Fotia & Nikoletta Boli & Ekaterini Vlachou, 2019. "Modelling and quantification of industry 4.0 manufacturing complexity based on information theory: a robotics case study," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 6908-6921, November.
    13. Aqlan, Faisal & Lam, Sarah S., 2015. "A fuzzy-based integrated framework for supply chain risk assessment," International Journal of Production Economics, Elsevier, vol. 161(C), pages 54-63.
    14. Ding, Li & Lam, Hugo K.S. & Cheng, T.C.E. & Zhou, Honggeng, 2018. "A review of short-term event studies in operations and supply chain management," International Journal of Production Economics, Elsevier, vol. 200(C), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastian Stahl & Björn Häckel & Daniel Leuthe & Christian Ritter, 2023. "Data or Business First?—Manufacturers’ Transformation Toward Data-driven Business Models," Schmalenbach Journal of Business Research, Springer, vol. 75(3), pages 303-343, September.
    2. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    3. Cagno, Enrico & Accordini, Davide & Thollander, Patrik & Andrei, Mariana & Hasan, A S M Monjurul & Pessina, Sonia & Trianni, Andrea, 2025. "Energy management and industry 4.0: Analysis of the enabling effects of digitalization on the implementation of energy management practices," Applied Energy, Elsevier, vol. 390(C).
    4. Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    6. Xi, Mengjie & Liu, Yang & Fang, Wei & Feng, Taiwen, 2024. "Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective," International Journal of Production Economics, Elsevier, vol. 267(C).
    7. Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).
    8. Bianco, Débora & Bueno, Adauto & Godinho Filho, Moacir & Latan, Hengky & Miller Devós Ganga, Gilberto & Frank, Alejandro G. & Chiappetta Jabbour, Charbel Jose, 2023. "The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19," International Journal of Production Economics, Elsevier, vol. 256(C).
    9. Tao, Zhibin & Chao, Jiaxiao, 2024. "Unlocking new opportunities in the industry 4.0 era, exploring the critical impact of digital technology on sustainable performance and the mediating role of GSCM practices," Innovation and Green Development, Elsevier, vol. 3(3).
    10. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Wuest, Thorsten & Stahre, Johan, 2020. "Smart Maintenance: a research agenda for industrial maintenance management," International Journal of Production Economics, Elsevier, vol. 224(C).
    11. Anas Iftikhar & Imran Ali & Ahmad Arslan & Shlomo Tarba, 2024. "Digital Innovation, Data Analytics, and Supply Chain Resiliency: A Bibliometric-based Systematic Literature Review," Annals of Operations Research, Springer, vol. 333(2), pages 825-848, February.
    12. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    13. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    14. Calış Duman, Meral & Akdemir, Bunyamin, 2021. "A study to determine the effects of industry 4.0 technology components on organizational performance," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Shet, Sateesh V. & Pereira, Vijay, 2021. "Proposed managerial competencies for Industry 4.0 – Implications for social sustainability," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Cuesta-Valiño, Pedro & Gutiérrez-Rodríguez, Pablo & Núnez-Barriopedro, Estela & García-Henche, Blanca, 2023. "Strategic orientation towards digitization to improve supermarket loyalty in an omnichannel context," Journal of Business Research, Elsevier, vol. 156(C).
    17. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 2017. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 18(2), pages 131-147, June.
    18. Cugno, Monica & Castagnoli, Rebecca & Büchi, Giacomo, 2021. "Openness to Industry 4.0 and performance: The impact of barriers and incentives," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    19. Wang, Shusheng & Yan, Yan & Li, Haitong & Wang, Baolin, 2024. "Whom you know matters: Network structure, industrial environment and digital orientation," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    20. Kahle, Júlia Hofmeister & Marcon, Érico & Ghezzi, Antonio & Frank, Alejandro G., 2020. "Smart Products value creation in SMEs innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.