IDEAS home Printed from
   My bibliography  Save this article

Rapid cost estimation of metallic components for the aerospace industry


  • de Cos, Javier
  • Sanchez, Fernando
  • Ortega, Francisco
  • Montequin, Vicente


This paper illustrates and compares the results of the application of two different approaches--non-parametric and artificial neural network techniques--for the rapid cost estimation of turbine components. This technique is a simple and automatic way for the estimation of the cost of a piece with no expert intervention. Three methods of estimation are compared: the projection pursuit method (PPR), the local polynomial approach (LOESS) and adaptive neural networks (ANNs). This comparative analysis serves to enhance current work that seeks to choose the optimum predictor model. The results confirm the validity of the neural network theory in this field of application, but not a clear superiority as compared with the non-parametric approach. The present research provides a new tool to avoid inadequate piece budgeting strategies. The use of these methods contributes to the minimisation of errors in the budgeting of new items.

Suggested Citation

  • de Cos, Javier & Sanchez, Fernando & Ortega, Francisco & Montequin, Vicente, 2008. "Rapid cost estimation of metallic components for the aerospace industry," International Journal of Production Economics, Elsevier, vol. 112(1), pages 470-482, March.
  • Handle: RePEc:eee:proeco:v:112:y:2008:i:1:p:470-482

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Araz, Ceyhun & Ozkarahan, Irem, 2007. "Supplier evaluation and management system for strategic sourcing based on a new multicriteria sorting procedure," International Journal of Production Economics, Elsevier, vol. 106(2), pages 585-606, April.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. " A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    4. Barria, J A & Hall, Stephen G, 2002. "A Non-parametric Approach to Pricing and Hedging Derivative Securities: With an Application to LIFFE Data," Computational Economics, Springer;Society for Computational Economics, vol. 19(3), pages 303-322, June.
    5. Kearns, P., 1993. "Volatility and the Pricing of Interest Rate Derivative Claims," Papers 47, Rochester, Business - Ph.D.,.
    6. H'mida, Fehmi & Martin, Patrick & Vernadat, Francois, 2006. "Cost estimation in mechanical production: The Cost Entity approach applied to integrated product engineering," International Journal of Production Economics, Elsevier, vol. 103(1), pages 17-35, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Loyer, Jean-Loup & Henriques, Elsa & Fontul, Mihail & Wiseall, Steve, 2016. "Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components," International Journal of Production Economics, Elsevier, vol. 178(C), pages 109-119.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:112:y:2008:i:1:p:470-482. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.