IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v662y2025ics0378437125000901.html
   My bibliography  Save this article

Cellular automata-based long platoon models based on dynamic multi-virtual leading vehicles

Author

Listed:
  • Zhu, Liling
  • Li, Ruoxin
  • Wang, Jue
  • Xiao, Qinxin
  • Wen, Jing
  • Hao, Junfeng
  • Yang, Da

Abstract

With the development of Connected Vehicles technology and Cooperative Vehicle Infrastructure System, the “long” platoon has become a promising trend of platooning technology, and long platoons can take the full advantages of platoons in enhancing traffic efficiency and reducing energy consumption. In this paper, we propose a Cellular Automata-based long platoon model in which the platoon is divided into several sub-platoons and virtual leading vehicles are assigned to the sub-platoons dynamically according to the surrounding traffic states. Moreover, to evaluate the proposed model, it is compared with the Lenarska’s model and the traditional Cooperative Adaptive Cruise Control (CACC) model by simulations, and the influences of the long platoon size and traffic perturbations on the platoon are analyzed. The simulations indicate that for the acceleration and deceleration perturbation scenarios, the virtual leaders effectively divide the long platoon into multiple sub-platoons, and its sequence can change dynamically to reduce the influence of the perturbation on the platoon. Compared to the Lenarska’s model and the CACC model, the proposed model reacts to the speed perturbations faster and has smaller speed variations. The proposed model has better stability and safety and is more efficient than the Lenarska’s model and the CACC model.

Suggested Citation

  • Zhu, Liling & Li, Ruoxin & Wang, Jue & Xiao, Qinxin & Wen, Jing & Hao, Junfeng & Yang, Da, 2025. "Cellular automata-based long platoon models based on dynamic multi-virtual leading vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 662(C).
  • Handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000901
    DOI: 10.1016/j.physa.2025.130438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000901
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Junwei & Qian, Yongsheng & Wang, Wenhai & Xu, Dejie & Li, Haijun, 2023. "The impact of connected automated vehicles and platoons on the traffic safety and stability in complex heterogeneous traffic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    2. Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    3. Junik Jo & Chul-Ho Kim, 2022. "Numerical Study on Aerodynamic Characteristics of Heavy-Duty Vehicles Platooning for Energy Savings and CO 2 Reduction," Energies, MDPI, vol. 15(12), pages 1-11, June.
    4. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    6. Cui, Ziyu & Wang, Xiaoning & Ci, Yusheng & Yang, Changyun & Yao, Jia, 2023. "Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Zhou, Y.J. & Zhu, H.B. & Guo, M.M. & Zhou, J.L., 2020. "Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Li, Yun & Zhang, Wenshan & Zhang, Shengrui & Pan, Yingjiu & Zhou, Bei & Jiao, Shuaiyang & Wang, Jianpo, 2024. "An improved eco-driving strategy for mixed platoons of autonomous and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    9. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    10. Davis, L.C., 2018. "Dynamics of a long platoon of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 818-834.
    11. Li, Linheng & Wang, Can & Gan, Jing & Zhao, Yan & Qu, Xu & Ran, Bin, 2024. "Optimizing platoon safety through key node selection in pinning control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    12. Sun, Dihua & Kang, Yirong & Yang, Shuhong, 2015. "A novel car following model considering average speed of preceding vehicles group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 103-109.
    13. Sala, Marcel & Soriguera, Francesc, 2021. "Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 116-131.
    14. Sun, Xiaotong & Yin, Yafeng, 2021. "Decentralized game-theoretical approaches for behaviorally-stable and efficient vehicle platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 45-69.
    15. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    16. Kosun, Caglar & Ozdemir, Serhan, 2017. "Determining the complexity of multi-component conformal systems: A platoon-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 688-695.
    17. Jiang, Yangsheng & Cong, Hongwei & Wang, Yi & Wu, Yunxia & Li, Hongwu & Yao, Zhihong, 2023. "A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Kuang, Hua & Wang, Mei-Ting & Lu, Fang-Hua & Bai, Ke-Zhao & Li, Xing-Li, 2019. "An extended car-following model considering multi-anticipative average velocity effect under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    19. Liu, Qingling & Xu, Xiaowen, 2024. "A platoon-based eco-driving control mechanism for low-density traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Zhang, Xuan & Jia, Bin & Jiang, Rui, 2018. "Impact of safety assistance driving systems on oscillation magnitude, fuel consumption and emission in a car platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 995-1007.
    21. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    22. Xin, Qi & Fu, Rui & Ukkusuri, Satish V. & Yu, Shaowei & Jiang, Rui, 2021. "Modeling and impact analysis of connected vehicle merging accounting for mainline random length tight-platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Wenhao & Zhao, Xiaohua & Li, Haijian & Fu, Qiang, 2024. "Traffic flow impact of mixed heterogeneous platoons on highways: an approach combining driving simulation and microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    2. Zhu, Liling & Tang, Yandong & Yang, Da, 2021. "Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    3. Ting, Samson & Lymburn, Thomas & Stemler, Thomas & Sun, Yuchao & Small, Michael, 2024. "Parameter estimation for Gipps’ car following model in a Bayesian framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    4. Zhang, Yan-Tao & Hu, Mao-Bin & Chen, Yu-Zhang & Shi, Cong-Ling, 2023. "Cooperative platoon forming strategy for connected autonomous vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    5. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Chen, Tao & Wang, Zhengwu & Xiang, Jian & Li, Hao, 2024. "Analysis of mixed traffic flow characteristics based on cellular automata model under lane management measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    7. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Siwach, Vikash & Yadav, Darshana & Redhu, Poonam, 2025. "Enhancing driver’s attention and overtaking efficiency in car-following model for Advanced Driver Assistance Systems (ADAS) vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    9. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    10. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    12. Zhang, Jiahe & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Li, Haijun, 2023. "Hybrid characteristics of heterogeneous traffic flow mixed with electric vehicles considering the amplitude of acceleration and deceleration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    13. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    14. Pei, Yulong & Pan, Sheng & Wen, Yuhang, 2024. "Analysis of roadway capacity for heterogeneous traffic flows considering the degree of trust of drivers of HVs in CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    15. Jiang, Yangsheng & Cong, Hongwei & Wang, Yi & Wu, Yunxia & Li, Hongwu & Yao, Zhihong, 2023. "A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    17. Wang, Xuan & Zeng, Junwei & Qian, Yongsheng & Wei, Xuting & Zhang, Futao, 2024. "Heterogeneous traffic flow of expressway with Level 2 autonomous vehicles considering moving bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    18. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    19. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.