IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v657y2025ics0378437124007453.html
   My bibliography  Save this article

Risk propagation in supply-chain network considering node heterogeneity

Author

Listed:
  • Chen, Yucheng
  • Xia, Yongxiang
  • Hua, Zhen

Abstract

In the current highly interconnected global economy, risk propagation within supply-chain networks has drawn significant attention from researchers because of its profound impact. Given the varying risk-propagation capabilities of different firms within the supply chain, we propose a risk-propagation model that considers the heterogeneity between nodes, referred to as the Degree-Dependent Risk Propagation (DDRP) model. We analyze the effects of different heterogeneity parameters on the performance of risk propagation in the supply-chain network and further explore how these effects influence the efficiency of logistics within the supply-chain network. The results indicate that the heterogeneity between nodes significantly increases the vulnerability of the supply-chain network, making it less efficient when facing risk propagation. In a highly heterogeneous network, more nodes become infected, leading to a notable decline in logistics-transportation efficiency, which severely disrupts the normal functioning of the entire supply chain. Our research not only provides a novel theoretical model for risk propagation in supply-chain networks, but also offers valuable practical insights for managers and decision-makers. By identifying and understanding the influence of heterogeneity on risk propagation, decision-makers can formulate more effective risk-management strategies, thereby enhancing supply-chain resilience and efficiency.

Suggested Citation

  • Chen, Yucheng & Xia, Yongxiang & Hua, Zhen, 2025. "Risk propagation in supply-chain network considering node heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
  • Handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007453
    DOI: 10.1016/j.physa.2024.130236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124007453
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean P. Willems, 2008. "Data Set--Real-World Multiechelon Supply Chains Used for Inventory Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 19-23, February.
    2. Wagner, Stephan M. & Neshat, Nikrouz, 2010. "Assessing the vulnerability of supply chains using graph theory," International Journal of Production Economics, Elsevier, vol. 126(1), pages 121-129, July.
    3. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Sharma, Amalesh & Adhikary, Anirban & Borah, Sourav Bikash, 2020. "Covid-19′s impact on supply chain decisions: Strategic insights from NASDAQ 100 firms using Twitter data," Journal of Business Research, Elsevier, vol. 117(C), pages 443-449.
    5. Trkman, Peter & McCormack, Kevin, 2009. "Supply chain risk in turbulent environments--A conceptual model for managing supply chain network risk," International Journal of Production Economics, Elsevier, vol. 119(2), pages 247-258, June.
    6. Hongchun Wang & Xinyan Zhang & Kebing Chen, 2022. "Research on Supply Chain Risk Transmission Mechanism Based on Improved SIRS Model," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-9, January.
    7. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Liu, Chong & Tang, Jiaze & Zhang, Zhi-Hai, 2024. "Impacts of capacity redundancy and process flexibility on risk mitigation in e-waste recycling supply chain management," Omega, Elsevier, vol. 128(C).
    9. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    10. Kevin P. Scheibe & Jennifer Blackhurst, 2018. "Supply chain disruption propagation: a systemic risk and normal accident theory perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 43-59, January.
    11. Nagurney, Anna, 2010. "Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction," International Journal of Production Economics, Elsevier, vol. 128(1), pages 200-208, November.
    12. Fu, Xiuwen & Xu, Xiaojie & Li, Wenfeng, 2024. "Cascading failure resilience analysis and recovery of automotive manufacturing supply chain networks considering enterprise roles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    13. Li, Zhuyue & Zhao, Peixin & Han, Xue, 2022. "Agri-food supply chain network disruption propagation and recovery based on cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    15. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    2. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Mohamed El Abdellaoui & Gilles Pache, 2019. "Effects of disruptive events within the supply chain on perceived logistics performance," Economics Bulletin, AccessEcon, vol. 39(1), pages 41-54.
    4. William Schueller & Christian Diem & Melanie Hinterplattner & Johannes Stangl & Beate Conrady & Markus Gerschberger & Stefan Thurner, 2022. "Propagation of disruptions in supply networks of essential goods: A population-centered perspective of systemic risk," Papers 2201.13325, arXiv.org.
    5. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    6. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    7. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    8. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    9. Zhimei Lei & Li Cui & Jing Tang & Lujie Chen & Bingbing Liu, 2024. "Supply chain resilience in the context of I4.0 and I5.0 from a multilayer network ripple effect perspective," Annals of Operations Research, Springer, vol. 342(2), pages 1149-1192, November.
    10. Giulio Marcucci & Filippo Emanuele Ciarapica & Giovanni Mazzuto & Maurizio Bevilacqua, 2024. "Analysis of ripple effect and its impact on supply chain resilience: a general framework and a case study on agri-food supply chain during the COVID-19 pandemic," Operations Management Research, Springer, vol. 17(1), pages 175-200, March.
    11. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    13. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    14. Paul, Sanjoy Kumar & Chowdhury, Priyabrata & Moktadir, Md. Abdul & Lau, Kwok Hung, 2021. "Supply chain recovery challenges in the wake of COVID-19 pandemic," Journal of Business Research, Elsevier, vol. 136(C), pages 316-329.
    15. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    16. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    17. Md Maruf Hossan Chowdhury & Priyabrata Chowdhury & Mohammed Quaddus & Kazi Waziur Rahman & Sakib Shahriar, 2024. "Flexibility in Enhancing Supply Chain Resilience: Developing a Resilience Capability Portfolio in the Event of Severe Disruption," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 25(2), pages 395-417, June.
    18. Dmitry Ivanov, 2024. "Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in supply chains," Annals of Operations Research, Springer, vol. 335(3), pages 1627-1644, April.
    19. Ren, Huanyu & Wang, Chao & Mu, Dong & Lim, Ming K. & Yue, Xiongping & Hu, Xiaoqian & Peng, Rui & Tsao, Yu-Chung, 2024. "Resilience strategies in an intertwined supply network: Mitigating the vulnerability under disruption ripple effects," International Journal of Production Economics, Elsevier, vol. 278(C).
    20. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.