IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v638y2024ics037843712400147x.html
   My bibliography  Save this article

Resilience analysis of highway network under rainfall using a data-driven percolation theory-based method

Author

Listed:
  • Li, Yang
  • Wu, Jialu
  • Xiao, Yunjiang
  • Hu, Hangqi
  • Wang, Wei
  • Chen, Jun

Abstract

This paper proposes a data-driven approach using percolation theory to analyze the resilience of highway networks under rainfall conditions. The proposed approach's main contribution is integrating real-world traffic data with percolation theory to evaluate the impact of rainfall on traffic flow and identify the critical links of highway networks. The resilience indicators, accounting for network topology and functionality, were formulated. To calculate these indicators under various rainfall intensities, the traffic flow fundamental diagrams were established using empirical rainfall and traffic data, and a probabilistic rainfall simulation model was developed. A case study of the East Midlands, UK highway network under a heavy rainfall event on September 27, 2019, validated the approach's feasibility. Furthermore, control experiments showed that the critical links identified by the proposed method enhance highway network resilience more effectively than traditional methods, thus validated the novelty of our approach.

Suggested Citation

  • Li, Yang & Wu, Jialu & Xiao, Yunjiang & Hu, Hangqi & Wang, Wei & Chen, Jun, 2024. "Resilience analysis of highway network under rainfall using a data-driven percolation theory-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
  • Handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s037843712400147x
    DOI: 10.1016/j.physa.2024.129639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400147X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s037843712400147x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.