IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v546y2020ics0378437119322113.html
   My bibliography  Save this article

A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study

Author

Listed:
  • Hadipeykani, Majid
  • Aghadavoudi, Farshid
  • Toghraie, Davood

Abstract

A molecular dynamics simulation study is performed to predict the glass transition temperature ( Tg) and the volumetric coefficient of thermal expansion (CTE) of thermoset polymer based nanocomposite reinforced by carbon nanotube (CNT). An atomistic model of cross-linked Diglycidyl ether bisphenol A (DGEBA) epoxy and Diethylenetriamine (DETA) was built as a matrix by employingCondensed-phase optimized molecular potentials for atomistic simulation (COMPASS27) force field. Different molecular models were constructed with various types of CNT embedded in epoxy simulation boxes. Tg was determined based on density variation with temperature. Furthermore, a new method is proposed to compute the CTE based on density variation with temperature. The effects of CNT diameter, volume fraction and chirality on Tg and CTE of nanocomposites were investigated using molecular dynamics simulation. For all cases, studied and CTE were less than pure epoxy (between 3.77% to 10.05% for Tg and respectively 14.24% to 32.23% and 23.82% to 41.65% for CTE below and above of Tg ). Increasing the CNT diameter in nanocomposite increases Tg and CTE (5.0% for Tg and 20.0% for CTE when the diameter of CNT changed 7.8A0 to 15.6A0). On the other hand increasing volume fraction of CNT in the nanocomposite decreases Tg and CTE (2.7% for Tg and 13.8% for CTE when the volume fraction of CNT in the nanocomposites changed 3.36% to 5.23%). Chirality studies under constant weight fraction of nanocomposites show that applying armchair CNT instead of zigzag CNT, decreases Tg and increases CTE (2.1% for Tg and 5.8% for CTE)

Suggested Citation

  • Hadipeykani, Majid & Aghadavoudi, Farshid & Toghraie, Davood, 2020. "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
  • Handle: RePEc:eee:phsmap:v:546:y:2020:i:c:s0378437119322113
    DOI: 10.1016/j.physa.2019.123995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322113
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javadzadegan, Ashkan & Joshaghani, Mohammad & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2020. "Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Ruhani, Behrooz & Barnoon, Pouya & Toghraie, Davood, 2019. "Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 616-627.
    3. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash & Hajian, Mehdi, 2019. "Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 13-30.
    4. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chtchelkatchev, N.M. & Ryltsev, R.E. & Mikheyenkov, A.V. & Valiulin, V.E. & Polishchuk, I.Ya., 2023. "Description of a glass transition with immeasurable structural relaxation time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    2. Rostami, Sara & Ahmadi-Danesh-Ashtiani, Hossein & Toghraie, Davood & Fazaeli, Reza, 2020. "A statistical method for simulation of boiling flow inside a Platinum microchannel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Talebizadehsardari, Pouyan & Shahsavar, Amin & Toghraie, Davood & Barnoon, Pouya, 2019. "An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    5. Ahmed, Waqar & Kazi, S.N. & Chowdhury, Z.Z. & Johan, Mohd Rafie Bin & Mehmood, Shahid & Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Gul, M. & Ahmad, Muhammad Shakeel, 2021. "Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+Al2O3+TiO2/DW based ternary hybrid nanofluids in a square flow conduit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    7. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems," Energy, Elsevier, vol. 213(C).
    9. Gediminas Skarbalius & Algis Džiugys & Edgaras Misiulis & Robertas Navakas & Paulius Vilkinis & Justas Šereika & Nerijus Pedišius, 2021. "Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies," Energies, MDPI, vol. 14(20), pages 1-13, October.
    10. Simeng Yan & Naisheng Guo & Xin Jin & Zhaoyang Chu & Sitong Yan, 2023. "The Study on Mathematical Simulation and Analysis of the Molecular Discrete System of the Sulfurated Eucommia Ulmoides Gum," Mathematics, MDPI, vol. 11(4), pages 1-22, February.
    11. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Lioua Kolsi & Fatih Selimefendigil & Mohamed Omri & Hatem Rmili & Badreddine Ayadi & Chemseddine Maatki & Badr M. Alshammari, 2023. "CFD Study of MHD and Elastic Wall Effects on the Nanofluid Convection Inside a Ventilated Cavity Including Perforated Porous Object," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    13. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    14. Pirmoradian, Mostafa & Torkan, Ehsan & Zali, Hamid & Hashemian, Mohammad & Toghraie, Davood, 2020. "Statistical and parametric instability analysis for delivery of nanoparticles through embedded DWCNT," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Hu, Chunhua & Lai, Shaoyong & Lai, Chong, 2020. "Investigations to the price evolutions of goods exchange with CES utility functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    16. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    17. Bommana Lavanya & Jorige Girish Kumar & Macherla Jayachandra Babu & Chakravarthula Sivakrishnam Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Irreversibility Analysis in the Ethylene Glycol Based Hybrid Nanofluid Flow amongst Expanding/Contracting Walls When Quadratic Thermal Radiation and Arrhenius Activation Energy Are Significant," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    18. Daniali, Omid Ali & Toghraie, Davood & Eftekhari, S. Ali, 2020. "Thermo-hydraulic and economic optimization of Iranol refinery oil heat exchanger with Copper oxide nanoparticles using MOMBO," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Hosseini, Mirollah & Afrouzi, Hamid Hassanzadeh & Arasteh, Hossein & Toghraie, Davood, 2019. "Energy analysis of a proton exchange membrane fuel cell (PEMFC) with an open-ended anode using agglomerate model: A CFD study," Energy, Elsevier, vol. 188(C).
    20. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:546:y:2020:i:c:s0378437119322113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.