IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119314074.html
   My bibliography  Save this article

Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol

Author

Listed:
  • Nawaz, M.

Abstract

This articles analyses the thermal performance of mixture of ethylene glycol and hybrid nanoparticles (MoS2 and SiO2). Three dimensional heat transfer in the mixture of ethylene glycol liquid (the Sutterby rheology) and hybrid nanoparticles is modeled and obtained highly complex mathematical models are solved by finite element method (FEM). Numerical experiments are carried out to compare thermal performances of working hybrid Sutterby nanofluid (mixture of Sutterby fluid, MoS2 and SiO2) and working Sutterby nanofluid (mixture of Sutterby fluid and SiO2). The effectiveness of thermal conductivity of hybrid nano-Sutterby fluid is more than the effectiveness of thermal conductivity of nanofluid. Therefore, the usage of hybrid nanofluid in thermal and cooling systems is recommended. As in this work, it is proven that the thermal performance of hybrid nanofluid is greater than the thermal performance of nanofluid. Therefore, hybrid nanoparticles are recommended to enhance thermal performance of working fluid. Surprisingly, the momentum boundary layer thickness in hybrid Sutterby liquid is greater than in conventional working fluid or nanofluid. Eventually, a significant reduction in thermal resistance of hybrid Sutterby nano-liquid is observed. Surface heat flux for the case of hybrid nanofluid is greater than that for the case of nanofluid or base fluid.

Suggested Citation

  • Nawaz, M., 2020. "Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314074
    DOI: 10.1016/j.physa.2019.122447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314074
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
    2. Sheikholeslami, M. & Zareei, Alireza & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong & Smida, Amor & Tlili, I., 2019. "Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 557-565.
    3. Sheikholeslami, M. & Keramati, Hadi & Shafee, Ahmad & Li, Zhixiong & Alawad, Omer A. & Tlili, I., 2019. "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 87-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed M. Fayyadh & Kohilavani Naganthran & Md Faisal Md Basir & Ishak Hashim & Rozaini Roslan, 2020. "Radiative MHD Sutterby Nanofluid Flow Past a Moving Sheet: Scaling Group Analysis," Mathematics, MDPI, vol. 8(9), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    6. Nguyen, Truong Khang & Usman, Muhammad & Sheikholeslami, M. & Haq, Rizwan Ul & Shafee, Ahmad & Jilani, Abdul Khader & Tlili, I., 2020. "Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Nazir, U. & Saleem, S. & Nawaz, M. & Sadiq, Muhammad Adil & Alderremy, A.A., 2020. "Study of transport phenomenon in Carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    10. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Hussanan, Abid & Qasim, Muhammad & Chen, Zhi-Min, 2020. "Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    14. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Alshehri, Fahad & Goraniya, Jaydeep & Combrinck, Madeleine L., 2020. "Numerical investigation of heat transfer enhancement of a water/ethylene glycol mixture with Al2O3–TiO2 nanoparticles," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    19. Minea, Alina Adriana & Murshed, S. M. Sohel, 2018. "A review on development of ionic liquid based nanofluids and their heat transfer behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 584-599.
    20. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.