IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v541y2020ics0378437119319636.html
   My bibliography  Save this article

Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial

Author

Listed:
  • Rabbi, Khan Md.
  • Sheikholeslami, M.
  • Karim, Anwarul
  • Shafee, Ahmad
  • Li, Zhixiong
  • Tlili, Iskander

Abstract

Numerical analysis of magneto-hydrodynamic flow has been a matter of concern for research engineers and scientists. In this paper, magneto-hydrodynamic convection in square tank occupied with Cu-H2O nanomaterial is investigated for different configurations of heater-sink, in which Artificial Neural Network (ANN) model was used as an advanced predictive tool. The active semi-circular thermal location (heater and sink) at the left- right vertical sides are kept constantly at high and low temperatures respectively, whereas other walls are kept adiabatic. To reach the solution, Galerkin residual finite element analysis has been implemented. The investigation has been done for Hartmann number (Ha= 0 – 100), Rayleigh number (Ra= 103-107) and nanomaterial concentration (φ=0 – 0.05) and finally, streamlines, isotherm contours and entropy generation contours are discussed thoroughly. The overall heat transfer and generation entropy are quantitatively investigated by overall Nusselt number (Nu) and Bejan number (Be), respectively. Existence of external Lorentz forces affects on both non-dimensional performance parameters, Nu and Be. Finally, the higher heat transfer is found for middle–middle configuration of heater-sink walls. The impact of Ha and φ on Nu and Be found from the numerical heat transfer analysis has been predicted and compared with ANN prediction model. To be noted, ANN is widely used technique to compare and predict different experimental and numerical data accurately in many engineering applications.

Suggested Citation

  • Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  • Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119319636
    DOI: 10.1016/j.physa.2019.123520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319636
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    3. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    4. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    5. Sheikholeslami, M. & Zareei, Alireza & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong & Smida, Amor & Tlili, I., 2019. "Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 557-565.
    6. Sheikholeslami, M. & Keramati, Hadi & Shafee, Ahmad & Li, Zhixiong & Alawad, Omer A. & Tlili, I., 2019. "Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 87-104.
    7. Sadoughi, Mohammadkazem & Li, Meng & Hu, Chao, 2018. "Multivariate system reliability analysis considering highly nonlinear and dependent safety events," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 189-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Tlili, Iskander, 2020. "Modeling of solar system with helical swirl flow device considering nanofluid turbulent forced convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Suvanjan Bhattacharyya & Debraj Sarkar & Rahul Roy & Shramona Chakraborty & Varun Goel & Eydhah Almatrafi, 2021. "Application of New Artificial Neural Network to Predict Heat Transfer and Thermal Performance of a Solar Air-Heater Tube," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    4. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    9. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    10. Tran Dinh, Manh & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Al-Jahmany, Yahya Yaseen Yahya & Nguyen-Thoi, Trung, 2020. "Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1-12.
    12. Nazir, U. & Saleem, S. & Nawaz, M. & Sadiq, Muhammad Adil & Alderremy, A.A., 2020. "Study of transport phenomenon in Carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    13. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Nawaz, M., 2020. "Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Hussanan, Abid & Qasim, Muhammad & Chen, Zhi-Min, 2020. "Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    17. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    18. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    19. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119319636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.