IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp557-565.html
   My bibliography  Save this article

Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel

Author

Listed:
  • Sheikholeslami, M.
  • Zareei, Alireza
  • Jafaryar, M.
  • Shafee, Ahmad
  • Li, Zhixiong
  • Smida, Amor
  • Tlili, I.

Abstract

Current research contains numerical modeling of the melting process acceleration with nanoparticles. The upper layer filled with paraffin contains CuO nanoparticles. Air hot flow inside the lower layer makes the NEPCM to change its phase from solid to liquid. Such model can be employed in a building to control the temperature of air in the room. The mathematical model has been provided considering single phase model and has been solved via finite volume method. Outputs demonstrate that melt fraction enhances with increasing in concentration of CuO nanoparticles. By dispersing nanoparticles, the air outlet temperature augments and heat conduction become stronger in upper layer

Suggested Citation

  • Sheikholeslami, M. & Zareei, Alireza & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong & Smida, Amor & Tlili, I., 2019. "Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 557-565.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:557-565
    DOI: 10.1016/j.physa.2019.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303176
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alsabery, A.I. & Chamkha, A.J. & Saleh, H. & Hashim, I. & Chanane, B., 2017. "Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 20-38.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    3. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    4. Sivasankaran, S. & Alsabery, A.I. & Hashim, I., 2018. "Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 275-293.
    5. Ijaz, S. & Nadeem, S., 2018. "Transportation of nanoparticles investigation as a drug agent to attenuate the atherosclerotic lesion under the wall properties impact," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 52-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Nazir, U. & Saleem, S. & Nawaz, M. & Sadiq, Muhammad Adil & Alderremy, A.A., 2020. "Study of transport phenomenon in Carreau fluid using Cattaneo–Christov heat flux model with temperature dependent diffusion coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Tran Dinh, Manh & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Al-Jahmany, Yahya Yaseen Yahya & Nguyen-Thoi, Trung, 2020. "Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    9. Nguyen, Truong Khang & Usman, Muhammad & Sheikholeslami, M. & Haq, Rizwan Ul & Shafee, Ahmad & Jilani, Abdul Khader & Tlili, I., 2020. "Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    10. Khan, Sami Ullah & Shehzad, Sabir Ali & Rauf, A. & Abbas, Z., 2020. "Thermally developed unsteady viscoelastic micropolar nanofluid with modified heat/mass fluxes: A generalized model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Nawaz, M., 2020. "Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    17. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Tlili, Iskander & Bhatti, M.M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Sheikholeslami, M. & Shafee, Ahmad, 2019. "Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    20. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    21. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    22. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhixiong & Sheikholeslami, M. & Ayani, M. & Shamlooei, M. & Shafee, Ahmad & Waly, Mohamed Ibrahim & Tlili, I., 2019. "Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 540-552.
    2. Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Li, Zhixiong & Hedayat, Mohammadali & Sheikholeslami, M. & Shafee, Ahmad & Zrelli, Houyem & Tlili, I. & Nguyen, Truong Khang, 2019. "Numerical simulation for entropy generation and hydrothermal performance of nanomaterial inside a porous cavity using Fe3O4 nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 272-288.
    4. Nguyen-Thoi, Trung & Sheikholeslami, M. & Hamid, Muhammad & Haq, Rizwan-ul & Shafee, Ahmad, 2019. "CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).
    7. Khan, M. Riaz & Pan, Kejia & Khan, Arif Ullah & Nadeem, S., 2020. "Dual solutions for mixed convection flow of SiO2−Al2O3/water hybrid nanofluid near the stagnation point over a curved surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    10. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    13. Cong, Ziyuan & Li, Yuwei & Pan, Yishan & Liu, Bo & Shi, Ying & Wei, Jianguang & Li, Wei, 2022. "Study on CO2 foam fracturing model and fracture propagation simulation," Energy, Elsevier, vol. 238(PB).
    14. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).
    15. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    16. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    17. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    18. Hemmat Esfe, Mohammad & Esfandeh, Saeed, 2020. "The statistical investigation of multi-grade oil based nanofluids: Enriched by MWCNT and ZnO nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    19. Mehmood, Obaid Ullah & Qureshi, Ayesha Aleem & Yasmin, Humaira & Uddin, Salah, 2020. "Thermo-mechanical analysis of non Newtonian peristaltic mechanism: Modified heat flux model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    20. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of offshore coalbed methane reservoirs: Flow characteristics of superheated steam in wellbores," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:557-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.