IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp675-686.html
   My bibliography  Save this article

Community detection by propagating the label of center

Author

Listed:
  • Ding, Jiajun
  • He, Xiongxiong
  • Yuan, Junqing
  • Chen, Yan
  • Jiang, Bo

Abstract

Community structure is a very important property of complex networks, but the way to detect it remains an open problem. A new community detection algorithm based on centers and neighbors (DCN) is proposed in this paper. This method employs the idea of density peak clustering (DPC) to detect the community centers, where the clustering centers are characterized by a higher density than their neighbors and by a relatively large distance from points with higher densities. Moreover, Chebyshev inequality is adopted to select these centers automatically. To overcome the “Domino Effect” of DPC, the multi-strategy of label propagation is proposed. This strategy propagates the labels according to neighbors of the node. It is worth pointing out that the proposed method (DCN) does not need to adjust the parameters for different networks. Experimental results on both synthetic and real-world networks demonstrate the power of DCN over the comparing community detection algorithms.

Suggested Citation

  • Ding, Jiajun & He, Xiongxiong & Yuan, Junqing & Chen, Yan & Jiang, Bo, 2018. "Community detection by propagating the label of center," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 675-686.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:675-686
    DOI: 10.1016/j.physa.2018.02.174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302632
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    2. Zhou, HongFang & Li, Jin & Li, JunHuai & Zhang, FaCun & Cui, YingAn, 2017. "A graph clustering method for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 551-562.
    3. Zhou, Ling & Hu, Ze-Chun, 2012. "Chebyshev’s inequality for Banach-space-valued random elements," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 925-931.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Gong, Maoguo & Liu, Jie & Ma, Lijia & Cai, Qing & Jiao, Licheng, 2014. "Novel heuristic density-based method for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 71-84.
    6. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    7. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanmei Hu & Bo Yang & Bin Duo & Xing Zhu, 2022. "Exhaustive Exploitation of Local Seeding Algorithms for Community Detection in a Unified Manner," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    2. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Jianjun Cheng & Xing Su & Haijuan Yang & Longjie Li & Jingming Zhang & Shiyan Zhao & Xiaoyun Chen, 2019. "Neighbor Similarity Based Agglomerative Method for Community Detection in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, May.
    4. Luo, Mengdi & Xu, Ying, 2022. "Community detection via network node vector label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    2. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    3. Jianjun Cheng & Xing Su & Haijuan Yang & Longjie Li & Jingming Zhang & Shiyan Zhao & Xiaoyun Chen, 2019. "Neighbor Similarity Based Agglomerative Method for Community Detection in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, May.
    4. Sun, Peng Gang, 2015. "Community detection by fuzzy clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 408-416.
    5. Zhang, Yuan & Li, Lu & Zhang, Wenbo & Cheng, Qixiu, 2022. "GATC and DeepCut: Deep spatiotemporal feature extraction and clustering for large-scale transportation network partition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Li, Yafang & Jia, Caiyan & Yu, Jian, 2015. "A parameter-free community detection method based on centrality and dispersion of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 321-334.
    7. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    8. Jing Wang & Jing Wang & Jingfeng Guo & Liya Wang & Chunying Zhang & Bin Liu, 2023. "Research Progress of Complex Network Modeling Methods Based on Uncertainty Theory," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
    9. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    10. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    12. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    13. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    14. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    15. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    16. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    17. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    18. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    20. Dragicevic, Arnaud Z. & Sinclair-Desgagné, Bernard, 2013. "Sustainable network dynamics," Ecological Modelling, Elsevier, vol. 270(C), pages 43-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:675-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.