IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v474y2017icp134-143.html
   My bibliography  Save this article

Identification of critical regulatory genes in cancer signaling network using controllability analysis

Author

Listed:
  • Ravindran, Vandana
  • V., Sunitha
  • Bagler, Ganesh

Abstract

Cancer is characterized by a complex web of regulatory mechanisms which makes it difficult to identify features that are central to its control. Molecular integrative models of cancer, generated with the help of data from experimental assays, facilitate use of control theory to probe for ways of controlling the state of such a complex dynamic network. We modeled the human cancer signaling network as a directed graph and analyzed it for its controllability, identification of driver nodes and their characterization. We identified the driver nodes using the maximum matching algorithm and classified them as backbone, peripheral and ordinary based on their role in regulatory interactions and control of the network. We found that the backbone driver nodes were key to driving the regulatory network into cancer phenotype (via mutations) as well as for steering into healthy phenotype (as drug targets). This implies that while backbone genes could lead to cancer by virtue of mutations, they are also therapeutic targets of cancer. Further, based on their impact on the size of the set of driver nodes, genes were characterized as indispensable, dispensable and neutral. Indispensable nodes within backbone of the network emerged as central to regulatory mechanisms of control of cancer. In addition to probing the cancer signaling network from the perspective of control, our findings suggest that indispensable backbone driver nodes could be potentially leveraged as therapeutic targets. This study also illustrates the application of structural controllability for studying the mechanisms underlying the regulation of complex diseases.

Suggested Citation

  • Ravindran, Vandana & V., Sunitha & Bagler, Ganesh, 2017. "Identification of critical regulatory genes in cancer signaling network using controllability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 134-143.
  • Handle: RePEc:eee:phsmap:v:474:y:2017:i:c:p:134-143
    DOI: 10.1016/j.physa.2017.01.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117300699
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.01.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorogovtsev, S. N. & Mendes, J.F.F., 2013. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780199686711, Decembrie.
    2. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Suling & Xu, Qiong & Chen, Aimin & Wang, Pei, 2020. "Structural controllability of dynamic transcriptional regulatory networks for Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    3. Zhang, Xizhe & Li, Qian, 2019. "Altering control modes of complex networks based on edge removal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 185-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    2. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    3. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    4. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    5. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    7. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    8. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    9. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    10. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    11. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    12. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    13. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.
    14. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    15. Gennady Ougolnitsky & Olga Gorbaneva, 2022. "Sustainable Management in Active Networks," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    16. Hiroyasu Inoue, 2016. "Controllability Analyses on Firm Networks Based on Comprehensive Data," Papers 1604.01322, arXiv.org.
    17. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    18. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).
    19. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Yong, Nuo & Ni, Shunjiang & Shen, Shifei & Ji, Xuewei, 2020. "A study of fluctuations in subway traffic from the control properties of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:474:y:2017:i:c:p:134-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.