IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v432y2015icp127-139.html
   My bibliography  Save this article

Multi-resolution community detection based on generalized self-loop rescaling strategy

Author

Listed:
  • Xiang, Ju
  • Tang, Yan-Ni
  • Gao, Yuan-Yuan
  • Zhang, Yan
  • Deng, Ke
  • Xu, Xiao-Ke
  • Hu, Ke

Abstract

Community detection is of considerable importance for analyzing the structure and function of complex networks. Many real-world networks may possess community structures at multiple scales, and recently, various multi-resolution methods were proposed to identify the community structures at different scales. In this paper, we present a type of multi-resolution methods by using the generalized self-loop rescaling strategy. The self-loop rescaling strategy provides one uniform ansatz for the design of multi-resolution community detection methods. Many quality functions for community detection can be unified in the framework of the self-loop rescaling. The resulting multi-resolution quality functions can be optimized directly using the existing modularity-optimization algorithms. Several derived multi-resolution methods are applied to the analysis of community structures in several synthetic and real-world networks. The results show that these methods can find the pre-defined substructures in synthetic networks and real splits observed in real-world networks. Finally, we give a discussion on the methods themselves and their relationship. We hope that the study in the paper can be helpful for the understanding of the multi-resolution methods and provide useful insight into designing new community detection methods.

Suggested Citation

  • Xiang, Ju & Tang, Yan-Ni & Gao, Yuan-Yuan & Zhang, Yan & Deng, Ke & Xu, Xiao-Ke & Hu, Ke, 2015. "Multi-resolution community detection based on generalized self-loop rescaling strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 127-139.
  • Handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:127-139
    DOI: 10.1016/j.physa.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115002459
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Ju & Hu, Ke, 2012. "Limitation of multi-resolution methods in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4995-5003.
    2. S. Zhang & X.-M. Ning & X.-S. Zhang, 2007. "Graph kernels, hierarchical clustering, and network community structure: experiments and comparative analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(1), pages 67-74, May.
    3. J. M. Kumpula & J. Saramäki & K. Kaski & J. Kertész, 2007. "Limited resolution in complex network community detection with Potts model approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 41-45, March.
    4. Chen, P. & Redner, S., 2010. "Community structure of the physical review citation network," Journal of Informetrics, Elsevier, vol. 4(3), pages 278-290.
    5. S. Lehmann & L. K. Hansen, 2007. "Deterministic modularity optimization," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(1), pages 83-88, November.
    6. Medus, A. & Acuña, G. & Dorso, C.O., 2005. "Detection of community structures in networks via global optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 358(2), pages 593-604.
    7. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    8. Jianbin Huang & Heli Sun & Yaguang Liu & Qinbao Song & Tim Weninger, 2011. "Towards Online Multiresolution Community Detection in Large-Scale Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Xiang, Ju & Hu, Tao & Zhang, Yan & Hu, Ke & Li, Jian-Ming & Xu, Xiao-Ke & Liu, Cui-Cui & Chen, Shi, 2016. "Local modularity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 451-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    3. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    5. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    6. Atsushi Miyauchi & Yasushi Kawase, 2016. "Z-Score-Based Modularity for Community Detection in Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    7. Zhao, Star X. & Rousseau, Ronald & Ye, Fred Y., 2011. "h-Degree as a basic measure in weighted networks," Journal of Informetrics, Elsevier, vol. 5(4), pages 668-677.
    8. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    9. Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Xiang, Ju & Hu, Tao & Zhang, Yan & Hu, Ke & Li, Jian-Ming & Xu, Xiao-Ke & Liu, Cui-Cui & Chen, Shi, 2016. "Local modularity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 451-459.
    11. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    12. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
    13. Sonia Cafieri & Alberto Costa & Pierre Hansen, 2014. "Reformulation of a model for hierarchical divisive graph modularity maximization," Annals of Operations Research, Springer, vol. 222(1), pages 213-226, November.
    14. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    15. Liu, Xu & Forrest, Jeffrey Yi-Lin & Luo, Qiang & Yi, Dong-Yun, 2012. "Detecting community structure using biased random merging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1797-1810.
    16. Béatrice Milard & Yoann Pitarch, 2023. "Egocentric cocitation networks and scientific papers destinies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(4), pages 415-433, April.
    17. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    18. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
    19. Xiang-Sun Zhang & Zhenping Li & Rui-Sheng Wang & Yong Wang, 2012. "A combinatorial model and algorithm for globally searching community structure in complex networks," Journal of Combinatorial Optimization, Springer, vol. 23(4), pages 425-442, May.
    20. Nicolò Pecora & Pablo Rovira Kaltwasser & Alessandro Spelta, 2016. "Discovering SIFIs in Interbank Communities," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:432:y:2015:i:c:p:127-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.