IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v431y2015icp63-73.html
   My bibliography  Save this article

Singularity power spectrum distribution

Author

Listed:
  • Xiong, Gang
  • Yu, Wenxian
  • Zhang, Shuning

Abstract

Fractal and multifractal signal processing are hot topics in current studies. At present, the research mainly concentrates in fractal dimension, multifractal spectrum and time-singularity spectrum distribution, which are based on differentiability of fractal subsets, however fail to reflect the energy and power measurement of fractal singular subset. Therefore, singularity power spectrum distribution (SPSD) is proposed in this paper, based on the traditional power spectrum density function and multifractal spectrum. In theory, basic concept of SPSD is put forward based on the related singularity measure, the theoretical expression of SPSD is deduced, and the compatibility between SPSD and conventional power spectrum analysis is proved. In algorithm, the discrete approximation algorithm of SPSD for discrete fractal time series is introduced. Simulation based on the multifractal Brownian motion (mFBM) and actual sea clutter indicates that SPSD can reveal effectively the singular power distribution of sea clutter and mFBM, and identify fractal signals, even for those with approximate multifractal spectra or approximate power spectra. The SPSD will provide application prospect of multifractal signal processing, detection and distinguishing of multifractal time series.

Suggested Citation

  • Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Singularity power spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 63-73.
  • Handle: RePEc:eee:phsmap:v:431:y:2015:i:c:p:63-73
    DOI: 10.1016/j.physa.2015.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115001259
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    2. B. Lashermes & S. G. Roux & P. Abry & S. Jaffard, 2008. "Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 201-215, January.
    3. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    4. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Carlos Echeverría, Juan, 2005. "Detrending fluctuation analysis based on moving average filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 199-219.
    5. Castro e Silva, A. & Moreira, J.G., 1997. "Roughness exponents to calculate multi-affine fractal exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 327-333.
    6. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    8. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    9. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    10. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    11. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    12. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    2. Xi, Caiping & Zhang, Shunning & Xiong, Gang & Zhao, Huichang, 2016. "A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 34-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    2. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    3. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    4. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    5. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    6. Dashtian, Hassan & Jafari, G. Reza & Sahimi, Muhammad & Masihi, Mohsen, 2011. "Scaling, multifractality, and long-range correlations in well log data of large-scale porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2096-2111.
    7. Leonarduzzi, R. & Wendt, H. & Abry, P. & Jaffard, S. & Melot, C. & Roux, S.G. & Torres, M.E., 2016. "p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 319-339.
    8. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    9. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    10. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    12. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    13. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    14. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    15. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    16. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    17. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    18. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    19. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    20. Kristoufek, Ladislav, 2014. "Detrending moving-average cross-correlation coefficient: Measuring cross-correlations between non-stationary series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 169-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:431:y:2015:i:c:p:63-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.