IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp532-540.html
   My bibliography  Save this article

Measuring edge importance to improve immunization performance

Author

Listed:
  • Huang, He
  • Yan, Zhijun
  • Pan, Yaohui

Abstract

The edge heterogeneity has a remarkable influence on disease spreading, but it has seldom been considered in the disease-controlling policies. Based on the gravity model, we propose the edge importance index to describe the influence of edge heterogeneity on immunization strategies. Then the edge importance and contact weight are combined to calculate the infection rates on the I–S (Infected–Susceptible) edges in the complex network, and the difference of the infection rates on strong and weak ties is analyzed. Simulation results show that edge heterogeneity has a significant influence on the performance of immunization strategies, and better immunization efficiency is derived when the vaccination rate of the nodes in the weak I–S edges is increased.

Suggested Citation

  • Huang, He & Yan, Zhijun & Pan, Yaohui, 2014. "Measuring edge importance to improve immunization performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 532-540.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:532-540
    DOI: 10.1016/j.physa.2014.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007651
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Long & Li, Chunguang, 2009. "English and Chinese languages as weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2561-2570.
    2. Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo & Cai, Kai-Quan, 2010. "Evolution of Chinese airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3922-3931.
    3. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    4. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    5. Lin Wang & Xiang Li & Yi-Qing Zhang & Yan Zhang & Kan Zhang, 2011. "Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    6. Kai Gong & Ming Tang & Pak Ming Hui & Hai Feng Zhang & Do Younghae & Ying-Cheng Lai, 2013. "An Efficient Immunization Strategy for Community Networks," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    7. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    8. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    9. Li, Menghui & Wu, Jinshan & Wang, Dahui & Zhou, Tao & Di, Zengru & Fan, Ying, 2007. "Evolving model of weighted networks inspired by scientific collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 355-364.
    10. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    11. E. Almaas & B. Kovács & T. Vicsek & Z. N. Oltvai & A.-L. Barabási, 2004. "Global organization of metabolic fluxes in the bacterium Escherichia coli," Nature, Nature, vol. 427(6977), pages 839-843, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    2. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    3. Dong, Lijun & Wang, Yi & Liu, Ran & Pi, Benjie & Wu, Liuyi, 2016. "Toward edge minability for role mining in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 274-286.
    4. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2018. "Rumor and authoritative information propagation model considering super spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 395-411.
    5. Dong, Chao & Yin, Qiuju & Liu, Wenyang & Yan, Zhijun & Shi, Tianyu, 2015. "Can rewiring strategy control the epidemic spreading?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 169-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Chen, Xue & Jiao, Pengfei & Yu, Yandong & Li, Xiaoming & Tang, Minghu, 2019. "Toward link predictability of bipartite networks based on structural enhancement and structural perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C), pages 1-1.
    3. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    4. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    7. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    8. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    9. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    10. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    12. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    14. Zhang, Yaping & Peng, Ting & Fu, Chuanyun & Cheng, Shaowu, 2016. "Simulation analysis of factors affecting air route connection in China," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 12-20.
    15. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    16. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    18. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    19. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    20. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:532-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.