IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16299-d995313.html
   My bibliography  Save this article

A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes

Author

Listed:
  • Peng Liu

    (School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Liang Gui

    (School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Huirong Wang

    (School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Muhammad Riaz

    (School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

Abstract

Link prediction, which is used to identify the potential relationship between nodes, is an important issue in network science. In existing studies, the traditional methods based on the structural similarity of nodes make it challenging to complete the task of link prediction in large-scale or sparse networks. Although emerging methods based on deep learning can solve this problem, most of the work mainly completes the link prediction through the similarity of the representation vector of network structure information. Many empirical studies show that link formation is affected by node attributes, and similarity is not the only criterion for the formation of links in reality. Accordingly, this paper proposed a two-stage deep-learning model for link prediction (i.e, TDLP), where the node representation vector of the network structure and attributes was obtained in the first stage, while link prediction was realized through supervised learning in the second stage. The empirical results on real networks showed that our model significantly outperforms the traditional methods (e.g., CN and RA), as well as newly proposed deep-learning methods (e.g., GCN and VGAE). This study not only proposed a deep-learning framework for link prediction from the perspective of structure and attribute fusion and link distribution capture, but also lays a methodological foundation for practical applications based on link prediction.

Suggested Citation

  • Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16299-:d:995313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bolun Chen & Fenfen Li & Senbo Chen & Ronglin Hu & Ling Chen, 2017. "Link prediction based on non-negative matrix factorization," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-18, August.
    2. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    3. Zhen-Zhen Wang & Jonathan J. H. Zhu, 2014. "Homophily versus preferential attachment: Evolutionary mechanisms of scientific collaboration networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(05), pages 1-8.
    4. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. Fernando P. Santos & Yphtach Lelkes & Simon A. Levin, 2021. "Link recommendation algorithms and dynamics of polarization in online social networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(50), pages 2102141118-, December.
    7. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    8. Fronczak, Agata & Hołyst, Janusz A & Jedynak, Maciej & Sienkiewicz, Julian, 2002. "Higher order clustering coefficients in Barabási–Albert networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 688-694.
    9. Wu, Zhihao & Lin, Youfang & Wang, Jing & Gregory, Steve, 2016. "Link prediction with node clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 1-8.
    10. Kim, Jooho & Hastak, Makarand, 2018. "Social network analysis: Characteristics of online social networks after a disaster," International Journal of Information Management, Elsevier, vol. 38(1), pages 86-96.
    11. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    12. Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
    13. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    14. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    15. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    8. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    9. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    10. Kumar, Ajay & Mishra, Shivansh & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
    12. Zhou, Tao, 2023. "Discriminating abilities of threshold-free evaluation metrics in link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    13. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    14. Wu, Jiehua & Shen, Jing & Zhou, Bei & Zhang, Xiayan & Huang, Bohuai, 2019. "General link prediction with influential node identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 996-1007.
    15. Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Xu-Wen Wang & Lorenzo Madeddu & Kerstin Spirohn & Leonardo Martini & Adriano Fazzone & Luca Becchetti & Thomas P. Wytock & István A. Kovács & Olivér M. Balogh & Bettina Benczik & Mátyás Pétervári & Be, 2023. "Assessment of community efforts to advance network-based prediction of protein–protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Mueller, Falko, 2023. "Link and edge weight prediction in air transport networks — An RNN approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    18. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    19. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16299-:d:995313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.