IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp1-8.html
   My bibliography  Save this article

Link prediction with node clustering coefficient

Author

Listed:
  • Wu, Zhihao
  • Lin, Youfang
  • Wang, Jing
  • Gregory, Steve

Abstract

Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai–Alanis–Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.

Suggested Citation

  • Wu, Zhihao & Lin, Youfang & Wang, Jing & Gregory, Steve, 2016. "Link prediction with node clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 1-8.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:1-8
    DOI: 10.1016/j.physa.2016.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000777
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Li & Qingsong Li & Wei Wei & Zhiming Zheng, 2022. "Convolution Based Graph Representation Learning from the Perspective of High Order Node Similarities," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    2. Wu, Jiehua & Shen, Jing & Zhou, Bei & Zhang, Xiayan & Huang, Bohuai, 2019. "General link prediction with influential node identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 996-1007.
    3. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    4. Assouli, Nora & Benahmed, Khelifa & Gasbaoui, Brahim, 2021. "How to predict crime — informatics-inspired approach from link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    5. Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    6. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    7. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    9. Lee, O-Joun & Jeon, Hyeon-Ju & Jung, Jason J., 2021. "Learning multi-resolution representations of research patterns in bibliographic networks," Journal of Informetrics, Elsevier, vol. 15(1).
    10. Akrati Saxena & George Fletcher & Mykola Pechenizkiy, 2022. "HM-EIICT: Fairness-aware link prediction in complex networks using community information," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2853-2870, November.
    11. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    12. Chao Li & Qiming Yang & Bowen Pang & Tiance Chen & Qian Cheng & Jiaomin Liu, 2021. "A Mixed Strategy of Higher-Order Structure for Link Prediction Problem on Bipartite Graphs," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
    13. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    14. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    15. Ankita Singh & Nanhay Singh, 2022. "An approach for predicting missing links in social network using node attribute and path information," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 944-956, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.