IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v606y2022ics0378437122006525.html
   My bibliography  Save this article

Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors

Author

Listed:
  • Tofighy, Sajjad
  • Charkari, Nasrollah Moghadam
  • Ghaderi, Foad

Abstract

Multiplex networks are very flexible at showing heterogeneous relationships between identical entities. Link prediction is a fundamental problem in network science. There are many studies on link prediction in complex networks, but few studies were conducted on link prediction in multiplex networks. This study proposes a method for estimating link likelihood in multiplex networks based on the Node-Accessibility-Distribution (NAD) and the co-evolving factors of layers. The NAD is introduced as a probabilistic measure to find local and pseudo-global structural features of nodes in layers of the multiplex network. The probabilistic distance among nodes is calculated using Jensen–Shannon diversity. Since the evolution of one layer subsequently affects the dynamics of other layers, this study introduces the co-evolving factors as criteria for determining the effect of the evolution of layers in the formation of new links in the target layer. In order to estimate the co-evolving factors, logistics regression and Maximum Likelihood Estimation(MLE) are employed. The proposed method is evaluated with six real-world datasets. The results show that the proposed approach has a better average AUC and precision than the state-of-the-art methods. Based on various datasets, the AUC and precision were improved by 1% to 5% compared with the state-of-the-art.

Suggested Citation

  • Tofighy, Sajjad & Charkari, Nasrollah Moghadam & Ghaderi, Foad, 2022. "Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
  • Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006525
    DOI: 10.1016/j.physa.2022.128043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006525
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    3. Zhou, Jianlin & Li, Lingbo & Zeng, An & Fan, Ying & Di, Zengru, 2018. "Random walk on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 558-566.
    4. Tiago A. Schieber & Laura Carpi & Albert Díaz-Guilera & Panos M. Pardalos & Cristina Masoller & Martín G. Ravetti, 2017. "Quantification of network structural dissimilarities," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    5. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2012. "Link prediction in citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 78-85, January.
    6. Woojeong Jin & Jinhong Jung & U Kang, 2019. "Supervised and extended restart in random walks for ranking and link prediction in networks," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    7. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2012. "Link prediction in citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 78-85, January.
    8. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Ma, Xiaoke & Sun, Penggang & Wang, Yu, 2018. "Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 121-136.
    10. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    11. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    12. Yabing Yao & Ruisheng Zhang & Fan Yang & Yongna Yuan & Qingshuang Sun & Yu Qiu & Rongjing Hu, 2017. "Link prediction via layer relevance of multiplex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(08), pages 1-24, August.
    13. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    14. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    15. Nikmehr, Golnaz & Salehi, Mostafa & Jalili, Mahdi, 2019. "TSS: Temporal similarity search measure for heterogeneous information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 696-707.
    16. Shakibian, Hadi & Charkari, Nasrollah Moghadam, 2018. "Statistical similarity measures for link prediction in heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 248-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    2. Lingling Zhang & Jing Li & Qiuliu Zhang & Fan Meng & Weili Teng, 2019. "Domain Knowledge-Based Link Prediction in Customer-Product Bipartite Graph for Product Recommendation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 311-338, January.
    3. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    6. Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Zhou, Tao, 2023. "Discriminating abilities of threshold-free evaluation metrics in link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    8. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    9. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    10. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    12. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    13. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    14. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    15. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    16. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    17. Jiao, Yang & Wu, Jianshe & Xiang, Peng & Wang, Fang, 2023. "Link prediction from fusion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    18. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    19. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Jing Ma & Yaohui Pan & Chih-Yi Su, 2022. "Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5497-5517, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.