IDEAS home Printed from
   My bibliography  Save this article

Kinetics of node splitting in evolving complex networks


  • Colman, E.R.
  • Rodgers, G.J.


We introduce a collection of complex networks generated by a combination of preferential attachment and a previously unexamined process of “splitting” nodes of degree k into k nodes of degree 1. Four networks are considered, each evolves at each time step by either preferential attachment, with probability p, or splitting with probability 1−p. Two methods of attachment are considered; first, attachment of an edge between a newly created node and an existing node in the network, and secondly by attachment of an edge between two existing nodes. Splitting is also considered in two separate ways; first by selecting each node with equal probability and secondly, selecting the node with probability proportional to its degree. Exact solutions for the degree distributions are found and scale-free structure is exhibited in those networks where the candidates for splitting are chosen with uniform probability, those that are chosen preferentially are distributed with a power law with exponential cut-off.

Suggested Citation

  • Colman, E.R. & Rodgers, G.J., 2012. "Kinetics of node splitting in evolving complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6626-6631.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6626-6631
    DOI: 10.1016/j.physa.2012.07.034

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6626-6631. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.