IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp175-184.html
   My bibliography  Save this article

Earthquake networks based on space–time influence domain

Author

Listed:
  • He, Xuan
  • Zhao, Hai
  • Cai, Wei
  • Liu, Zheng
  • Si, Shuai-Zong

Abstract

A new construction method of earthquake networks based on the theory of complex networks is presented in this paper. We propose a space–time influence domain for each earthquake to quantify the subsequence of earthquakes which are directly influenced by the former earthquake. The size of the domain is according to the magnitude of earthquake. In this way, the seismic data in the region of California are mapped to a topology of earthquake network. It is discovered that the earthquake networks in different time spans behave as scale-free networks. This result can be interpreted in terms of the Gutenberg–Richter law. Discovery of small-world characteristic is also reported on the earthquake network constructed by our method. The Omori law emerges as a feature of seismicity for the out-going links of the network. These characteristics highlight a novel aspect of seismicity as a complex phenomenon and will help us to reveal the internal mechanism of seismic system.

Suggested Citation

  • He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:175-184
    DOI: 10.1016/j.physa.2014.03.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114003045
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hui & Zhao, Hai & Cai, Wei & Xu, Jiu-Qiang & Ai, Jun, 2013. "A modular attachment mechanism for software network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2025-2037.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. N. Lotfi & A. Darooneh, 2012. "The earthquakes network: the role of cell size," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(1), pages 1-4, January.
    4. Jayanth R. Banavar & Amos Maritan & Andrea Rinaldo, 1999. "Size and form in efficient transportation networks," Nature, Nature, vol. 399(6732), pages 130-132, May.
    5. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    6. Abe, Sumiyoshi & Pastén, Denisse & Suzuki, Norikazu, 2011. "Finite data-size scaling of clustering in earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1343-1349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ya & Zhao, Hai & He, Xuan & Pei, Fan-Dong & Li, Guang-Guang, 2016. "Bayesian prediction of earthquake network based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 138-149.
    2. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    3. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xuan & Wang, Luyang & Zhu, Hongbo & Liu, Zheng, 2021. "Statistical analysis of complex weighted network for seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Rezaei, Soghra & Darooneh, Amir Hossein & Lotfi, Nastaran & Asaadi, Nazila, 2017. "The earthquakes network: Retrieving the empirical seismological laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 80-87.
    3. Rezaei, Soghra & Moghaddasi, Hanieh & Darooneh, Amir Hossein, 2018. "Preferential attachment in evolutionary earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 172-179.
    4. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Chiao, Ling-Yun, 2012. "Variation dynamics of the complex topology of a seismicity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 497-507.
    6. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    7. Xu, Yanjie & Ren, Tao & Liu, Yiyang & Li, Zhe, 2018. "Earthquake prediction based on community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 969-974.
    8. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    9. Lotfi, Nastaran & Darooneh, Amir H., 2013. "Nonextensivity measure for earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3061-3065.
    10. Li, Hui & Zhao, Hai & Cai, Wei & Xu, Jiu-Qiang & Ai, Jun, 2013. "A modular attachment mechanism for software network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2025-2037.
    11. Shahraki Ebrahimi, Ammar & Yavari, Elham & Khatibi, Toktam, 2021. "Novel methods for creating an earthquake complex network using a declustered catalog," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Deyasi, Krishanu & Chakraborty, Abhijit & Banerjee, Anirban, 2017. "Network similarity and statistical analysis of earthquake seismic data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 224-234.
    13. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    14. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    15. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    16. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    17. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    18. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    19. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    20. Ding, Waverly & Choi, Emily, 2008. "Divergent Paths or Stepping Stones: A Comparison of Scientists’ Advising and Founding Activities," Institute for Research on Labor and Employment, Working Paper Series qt4907j25p, Institute of Industrial Relations, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:175-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.