IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i4p797-806.html
   My bibliography  Save this article

Has the world economy reached its globalization limit?

Author

Listed:
  • Miśkiewicz, Janusz
  • Ausloos, Marcel

Abstract

The economy globalization measure problem is discussed. Four macroeconomic indices of twenty among the “richest” countries are examined. Four types of “distances” are calculated. Two types of networks are next constructed for each distance measure definition. It is shown that the globalization process can be best characterised by an entropy measure, based on entropy Manhattan distance. It is observed that a globalization maximum was reached during the interval 1970–2000. More recently a deglobalization process has been observed.

Suggested Citation

  • Miśkiewicz, Janusz & Ausloos, Marcel, 2010. "Has the world economy reached its globalization limit?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 797-806.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:797-806
    DOI: 10.1016/j.physa.2009.10.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008991
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.10.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Feenstra, Robert C & Hanson, Gordon H, 1996. "Globalization, Outsourcing, and Wage Inequality," American Economic Review, American Economic Association, vol. 86(2), pages 240-245, May.
    2. Jung, Woo-Sung & Kwon, Okyu & Wang, Fengzhong & Kaizoji, Taisei & Moon, Hie-Tae & Stanley, H. Eugene, 2008. "Group dynamics of the Japanese market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 537-542.
    3. Sergei Maslov, 2001. "Measures of globalization based on cross-correlations of world financial indices," Papers cond-mat/0103397, arXiv.org, revised Apr 2001.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Maslov, Sergei, 2001. "Measures of globalization based on cross-correlations of world financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 397-406.
    6. Eryiğit, Mehmet & Eryiğit, Resul, 2009. "Network structure of cross-correlations among the world market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3551-3562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ausloos, Marcel & Saeedian, Meghdad & Jamali, Tayeb & Farahani, S. Vasheghani & Jafari, G. Reza, 2017. "How visas shape and make visible the geopolitical architecture of the planet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 267-275.
    2. Clippe, Paulette & Ausloos, Marcel, 2012. "Benford’s law and Theil transform of financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6556-6567.
    3. Miśkiewicz, Janusz, 2013. "Power law classification scheme of time series correlations. On the example of G20 group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2150-2162.
    4. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2012. "Synchronization and Diversity in Business Cycles: A Network Approach Applied to the European Union," CREMA Working Paper Series 2012-01, Center for Research in Economics, Management and the Arts (CREMA).
    5. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    6. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    7. David Matesanz & Benno Torgler & Germán Dabat & Guillermo J. Ortega, 2014. "Co-movements in commodity prices: a note based on network analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 45(S1), pages 13-21, November.
    8. Jelena Stankevičiene & Tatjana Sviderske & Algita Miečinskiene, 2013. "Relationship between Economic Security and Country Risk Indicators in EU Baltic Sea Region Countries," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 1(3), pages 21-33.
    9. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    10. Tiago Trancoso, 2013. "Global macroeconomic interdependence: a minimum spanning tree approach," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 5(1), pages 179-189, June.
    11. David Matesanz & Benno Torgler & Germán Dabat & Guillermo J. Ortega, 2014. "Co-movements in commodity prices: a note based on network analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 45(S1), pages 13-21, November.
    12. Matesanz, David & Ortega, Guillermo J., 2015. "Sovereign public debt crisis in Europe. A network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 756-766.
    13. Miśkiewicz, Janusz, 2016. "Improving quality of sample entropy estimation for continuous distribution probability functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 473-485.
    14. Marcel Ausloos, 2013. "Econophysics: Comments on a Few Applications, Successes, Methods and Models," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 101-115, July.
    15. Argentiero, Amedeo & Bovi, Maurizio & Cerqueti, Roy, 2016. "Bayesian estimation and entropy for economic dynamic stochastic models: An exploration of overconsumption," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 143-157.
    16. Salois, Matthew J., 2013. "Regional changes in the distribution of foreign aid: An entropy approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2893-2902.
    17. Janusz Mi'skiewicz, 2012. "Network analysis of correlation strength between the most developed countries," Papers 1211.3599, arXiv.org.
    18. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2012. "Synchronization and Diversity in Business Cycles: A Network Approach Applied to the European Union," CREMA Working Paper Series 2012-01, Center for Research in Economics, Management and the Arts (CREMA).
    19. Eugen Scarlat, 2016. "Connectivity - Based Clustering of GDP Time Series," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 23-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    2. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    3. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    4. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    5. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    6. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    7. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    8. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    9. James, Nick & Menzies, Max & Gottwald, Georg A., 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    10. Agne Reklaite, 2015. "Globalisation Effect Measure Via Hierarchical Dynamic Factor Modelling," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 10(3), pages 139-149, September.
    11. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    12. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    13. Samitas, Aristeidis & Kampouris, Elias & Polyzos, Stathis, 2022. "Covid-19 pandemic and spillover effects in stock markets: A financial network approach," International Review of Financial Analysis, Elsevier, vol. 80(C).
    14. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets Around the Global Financial Crisis," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 195-210, February.
    15. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    16. Núñez-Mora, José Antonio & Mata-Mata, Leovardo, 2014. "Una aplicación de la teoría de matrices aleatorias para analizar la variación del rendimiento de diferentes commodities a lo largo del periodo 2000-2012," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(41), pages 7-20, segundo s.
    17. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2009. "The expectation hypothesis of interest rates and network theory: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1137-1149.
    18. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    19. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    20. Linda Margarita Medina Herrera & Ernesto Armando Pacheco Velazquez, 2013. "Spectral Analysis And Networks In Financial Correlation Matrices, Analisis Espectral Y Redes En Matrices De Correlacion Financiera," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 6(6), pages 15-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:4:p:797-806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.