IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v382y2007i1p114-120.html
   My bibliography  Save this article

Modeling long-range memory trading activity by stochastic differential equations

Author

Listed:
  • Gontis, V.
  • Kaulakys, B.

Abstract

We propose a model of fractal point process driven by the nonlinear stochastic differential equation. The model is adjusted to the empirical data of trading activity in financial markets. This reproduces the probability distribution function and power spectral density of trading activity observed in the stock markets. We present a simple stochastic relation between the trading activity and return, which enables us to reproduce long-range memory statistical properties of volatility by numerical calculations based on the proposed fractal point process.

Suggested Citation

  • Gontis, V. & Kaulakys, B., 2007. "Modeling long-range memory trading activity by stochastic differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 114-120.
  • Handle: RePEc:eee:phsmap:v:382:y:2007:i:1:p:114-120
    DOI: 10.1016/j.physa.2007.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001410
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    2. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    3. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    4. V. Gontis & A. Kononovicius, 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Papers 1701.01255, arXiv.org.
    5. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
    6. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
    7. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    8. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    3. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    4. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    5. Aviral Tiwari & Niyati Bhanja & Arif Dar & Faridul Islam, 2015. "Time–frequency relationship between share prices and exchange rates in India: Evidence from continuous wavelets," Empirical Economics, Springer, vol. 48(2), pages 699-714, March.
    6. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Bence Toth & Janos Kertesz, 2009. "The Epps effect revisited," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 793-802.
    8. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    9. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    10. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    11. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    12. Beine, Michel & Laurent, Sébastien & Palm, Franz C., 2009. "Central bank FOREX interventions assessed using realized moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 112-127, February.
    13. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    14. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    15. Andrea Terzi, 2003. "Is a transactions tax an effective means to stabilize the foreign exchange market?," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 56(227), pages 367-385.
    16. Malgorzata Doman, 2008. "Information Impact on Stock Price Dynamics," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 13-20.
    17. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    19. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    20. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:382:y:2007:i:1:p:114-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.