IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Model of wealth and goods dynamics in a closed market

Listed author(s):
  • Ausloos, Marcel
  • Pe¸kalski, Andrzej

A simple computer simulation model of a closed market on a fixed network with free flow of goods and money is introduced. The model contains only two variables: the amount of goods and money beside the size of the system. An initially flat distribution of both variables is presupposed. We show that under completely random rules, i.e. through the choice of interacting agent pairs on the network and of the exchange rules that the market stabilizes in time and shows diversification of money and goods. We also indicate that the difference between poor and rich agents increases for small markets, as well as for systems in which money is steadily deduced from the market through taxation. It is also found that the price of goods decreases when taxes are introduced, likely due to the less availability of money.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 373 (2007)
Issue (Month): C ()
Pages: 560-568

in new window

Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:560-568
DOI: 10.1016/j.physa.2006.04.112
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Repetowicz, Przemysław & Hutzler, Stefan & Richmond, Peter, 2005. "Dynamics of money and income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 641-654.
  2. Ausloos, Marcel & Vandewalle, N. & Ivanova, K., 2000. "Time is money," MPRA Paper 28703, University Library of Munich, Germany.
  3. Iglesias, J.R. & Gonçalves, S. & Pianegonda, S. & Vega, J.L. & Abramson, G., 2003. "Wealth redistribution in our small world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(1), pages 12-17.
  4. Arnab Das & Sudhakar Yarlagadda, 2003. "Analytic treatment of a trading market model," Papers cond-mat/0304685,
  5. Przemyslaw Repetowicz & Stefan Hutzler & Peter Richmond, 2004. "Dynamics of Money and Income Distributions," Papers cond-mat/0407770,
  6. Donangelo, R & Sneppen, K, 2002. "Cooperativity in a trading model with memory and production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 581-591.
  7. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256,, revised Jun 2000.
  8. Pianegonda, S & Iglesias, J.R & Abramson, G & Vega, J.L, 2003. "Wealth redistribution with conservative exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 667-675.
  9. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
  10. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289,, revised Jan 2004.
  11. Stéphane Hallegatte, 2006. "A Cost-Benefit Analysis of the New Orleans Flood Protection System," Post-Print hal-00164628, HAL.
  12. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
  13. Manolova, Petia & Lai Tong, Charles & Deissenberg, Christophe, 2003. "Money and exchange in an economy with spatially differentiated agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 445-453.
  14. Patriarca, Marco & Chakraborti, Anirban & Kaski, Kimmo, 2004. "Gibbs versus non-Gibbs distributions in money dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 334-339.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:560-568. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.