IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v323y2003icp578-590.html
   My bibliography  Save this article

Scaling, self-similarity and multifractality in FX markets

Author

Listed:
  • Xu, Zhaoxia
  • Gençay, Ramazan

Abstract

This paper presents an empirical investigation of scaling and multifractal properties of US Dollar–Deutschemark (USD–DEM) returns. The data set is ten years of 5-min returns. The cumulative return distributions of positive and negative tails at different time intervals are linear in the double logarithmic space. This presents strong evidence that the USD–DEM returns exhibit power-law scaling in the tails. To test the multifractal properties of USD–DEM returns, the mean moment of the absolute returns as a function of time intervals is plotted for different powers of absolute returns. These moments show different slopes for these powers of absolute returns. The nonlinearity of the scaling exponent indicates that the returns are multifractal.

Suggested Citation

  • Xu, Zhaoxia & Gençay, Ramazan, 2003. "Scaling, self-similarity and multifractality in FX markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 578-590.
  • Handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:578-590
    DOI: 10.1016/S0378-4371(03)00030-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710300030X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    2. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    3. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    4. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Scaling properties of foreign exchange volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 249-266.
    5. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    2. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
    3. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
    4. Matsushita, Raul & Gleria, Iram & Figueiredo, Annibal & Rathie, Pushpa & Da Silva, Sergio, 2004. "Exponentially damped Lévy flights, multiscaling, and exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 353-369.
    5. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    6. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    7. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    8. Batten, Jonathan A. & Kinateder, Harald & Wagner, Niklas, 2014. "Multifractality and value-at-risk forecasting of exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 71-81.
    9. Hartmann, András & Mukli, Péter & Nagy, Zoltán & Kocsis, László & Hermán, Péter & Eke, András, 2013. "Real-time fractal signal processing in the time domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 89-102.
    10. repec:spr:jeicoo:v:12:y:2017:i:3:d:10.1007_s11403-016-0176-x is not listed on IDEAS
    11. Yang, Lu & Cai, Xiao Jing & Zhang, Huimin & Hamori, Shigeyuki, 2016. "Interdependence of foreign exchange markets: A wavelet coherence analysis," Economic Modelling, Elsevier, vol. 55(C), pages 6-14.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    13. Mauricio Labadie & Charles-Albert Lehalle, 2012. "Optimal starting times, stopping times and risk measures for algorithmic trading," Working Papers hal-00705056, HAL.
    14. repec:agr:journl:v:3(612):y:2017:i:3(612):p:71-82 is not listed on IDEAS
    15. Selçuk, Faruk, 2004. "Financial earthquakes, aftershocks and scaling in emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 306-316.
    16. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    17. Chakrabarty, Anindya & De, Anupam & Gunasekaran, Angappa & Dubey, Rameshwar, 2015. "Investment horizon heterogeneity and wavelet: Overview and further research directions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 45-61.
    18. Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.
    19. Sergio Da Silva, 2004. "International Finance, Levy Distributions, and the Econophysics of Exchange Rates," International Finance 0405018, EconWPA.
    20. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    21. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    22. Cajueiro, Daniel O. & Gogas, Periklis & Tabak, Benjamin M., 2009. "Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 50-57, March.
    23. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2013. "Intraday volatility spillovers between spot and futures indices: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1795-1802.
    24. A. Sensoy & Benjamin Miranda Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    25. Mauricio Labadie & Charles-Albert Lehalle, 2012. "Optimal starting times, stopping times and risk measures for algorithmic trading: Target Close and Implementation Shortfall," Papers 1205.3482, arXiv.org, revised Dec 2013.

    More about this item

    Keywords

    Scaling; Self-similarity; Multifractality; High-frequency data; Foreign exchange markets;

    JEL classification:

    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:578-590. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.