IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v224y2024ipbp63-75.html
   My bibliography  Save this article

Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model

Author

Listed:
  • La Tona, G.
  • Luna, M.
  • Di Piazza, M.C.

Abstract

Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-based scheduling, dispatch, and real-time operation. However, producing accurate forecasting for individual residential households is more challenging compared to the forecasting of load demand at the distribution level, which is smoother and benefits from statistical compensation of errors. This paper presents a day-ahead forecasting technique for individual residential load demand that is based on the Long Short-Term Memory encoder–decoder architecture, which is extended to consider possibly differing sets of past and future exogenous variables. A novel focus is posed on the validation of the proposed approach considering that it is tailored for use by energy management systems. A publicly available dataset was used for validation, and the approach was compared with three other methods, resulting in a reduction of the Mean Absolute Scaled Error by up to 8%.

Suggested Citation

  • La Tona, G. & Luna, M. & Di Piazza, M.C., 2024. "Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 63-75.
  • Handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:63-75
    DOI: 10.1016/j.matcom.2023.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423002720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:63-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.