IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp251-283.html
   My bibliography  Save this article

Novel intelligent predictive networks for analysis of chaos in stochastic differential SIS epidemic model with vaccination impact

Author

Listed:
  • Anwar, Nabeela
  • Ahmad, Iftikhar
  • Kiani, Adiqa Kausar
  • Shoaib, Muhammad
  • Raja, Muhammad Asif Zahoor

Abstract

In this paper, stochastic predictive computing networks are exploited to investigate the dynamics of the SIS with vaccination impact based epidemic model (SISV-EM) represented by nonlinear systems of stochastic differential equations (SDEs) by exploitation of artificial neural networks (ANNs) with the backpropagated Levenberg-Marquardt technique (BLMT) i.e., (ANNs-BLMT) to approximate the solution behavior. The stochastic nonlinear SISV-EM is governed with three classes: susceptible, infectious, and vaccinated populations. The referenced or target datasets for ANNs-BLMT are constructed by employing Euler-Maruyama (EM) scheme for solving stochastic differential systems in case of sufficiently various nonlinear SISV-EM scenarios by varying the percentage of vaccination for newly born, the coefficient of transmission, the natural mortality rates, the infectious rates of recovery, the rate at which vaccinated people lose their immunity, the rate of death caused by disease, the proportion of vaccinated against susceptible and the white noise in the environment. Based on arbitrary training, testing, and validation samples from the referenced dataset, the ANNs-BLMT provides an approximate solution for the stochastic nonlinear SISV-EM, with significant correlations to the referenced results. Exhaustive simulation-based results using error histograms, mean square errors, and regression analyses further demonstrate that the proposed ANNs-BLMT is efficient, consistent, and accurate for solving SISV-EM.

Suggested Citation

  • Anwar, Nabeela & Ahmad, Iftikhar & Kiani, Adiqa Kausar & Shoaib, Muhammad & Raja, Muhammad Asif Zahoor, 2024. "Novel intelligent predictive networks for analysis of chaos in stochastic differential SIS epidemic model with vaccination impact," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 251-283.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:251-283
    DOI: 10.1016/j.matcom.2023.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:251-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.