IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309437.html
   My bibliography  Save this article

Stability analysis of a SIR epidemic model with random parametric perturbations

Author

Listed:
  • Bobryk, R.V.

Abstract

This paper is concerned with a SIR model for the spread of an epidemic amongst a population of individuals with random additive perturbations of the transmission rate. Recently, many papers are devoted to the case of the Gaussian white noise perturbation. However, this model violates the condition of positivity of the transmission rate. In the paper we consider three models of the random perturbation which do not change this condition. The two of them are the telegraphic noise, trichotomous noise and the third is the bounded noise. Explicit conditions of the amost sure asymptotic stability of disease-free equilibrium state are obtained in the case of the first two models. An efficient numerical procedure is proposed for the construction of stability charts in the case of bounded noise. The effect of random perturbations on the stability behavior of disease-free equilibrium is discussed. Some transient mean-square properties of the SIR stochastic epidemic model are also presented.

Suggested Citation

  • Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309437
    DOI: 10.1016/j.chaos.2020.110552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jiancheng & Li, Xuan & Liu, Xianbin, 2017. "On the pth moment stability of the binary airfoil induced by bounded noise," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 109-120.
    2. d’Onofrio, Alberto & Caravagna, Giulio & de Franciscis, Sebastiano, 2018. "Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2056-2068.
    3. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    4. Siewe, M. Siewe & Kenfack, W. Fokou & Kofane, T.C., 2019. "Probabilistic response of an electromagnetic transducer with nonlinear magnetic coupling under bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 26-35.
    5. Lu, Ruoxin & Wei, Fengying, 2019. "Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 572-587.
    6. Ji, Chunyan & Jiang, Daqing & Shi, Ningzhong, 2011. "Multigroup SIR epidemic model with stochastic perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1747-1762.
    7. Liu, Qun & Chen, Qingmei, 2015. "Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 140-153.
    8. Ping Han & Zhengbo Chang & Xinzhu Meng, 2020. "Asymptotic Dynamics of a Stochastic SIR Epidemic System Affected by Mixed Nonlinear Incidence Rates," Complexity, Hindawi, vol. 2020, pages 1-17, May.
    9. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    12. Tornatore, Elisabetta & Maria Buccellato, Stefania & Vetro, Pasquale, 2005. "Stability of a stochastic SIR system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 111-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Jeong, Darae & Lee, Chang Hyeong & Choi, Yongho & Kim, Junseok, 2016. "The daily computed weighted averaging basic reproduction number R0,k,ωn for MERS-CoV in South Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 190-197.
    3. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    4. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    5. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    6. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Su, Huishuang & Li, Xue, 2020. "Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Li, Yan & Ye, Ming & Zhang, Qimin, 2019. "Strong convergence of the partially truncated Euler–Maruyama scheme for a stochastic age-structured SIR epidemic model," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    9. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 837-845.
    10. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Periodic solution for a stochastic nonautonomous SIR epidemic model with logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 816-826.
    12. Pan, Tao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Extinction and periodic solutions for an impulsive SIR model with incidence rate stochastically perturbed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 385-397.
    13. Rajasekar, S.P. & Pitchaimani, M., 2019. "Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 207-221.
    14. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    15. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    16. Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    17. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    18. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    19. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    20. William Brock & Anastasios Xepapadeas, 2020. "The Economy, Climate Change and Infectious Diseases: Links and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 811-824, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.