IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp572-587.html
   My bibliography  Save this article

Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate

Author

Listed:
  • Lu, Ruoxin
  • Wei, Fengying

Abstract

We formulate an epidemic model with age of vaccination and generalized nonlinear incidence rate, where the total population consists of the susceptible, the vaccinated, the infected and the removed. We then reach a stochastic SVIR model when the fluctuation is introduced into the transmission rate. By using Itô’s formula and Lyapunov methods, we first show that the stochastic epidemic model admits a unique global positive solution with the positive initial value. We then obtain the sufficient conditions of the stochastic epidemic model. Moreover, the threshold tells the disease spreads or not is derived. If the intensity of the white noise is small enough and R˜0<1, then the disease eventually becomes extinct with negative exponential rate. If R˜0>1, then the disease is weakly permanent. The persistence in the mean of the infected is also obtained when the indicator Rˆ0>1, which means the disease will prevail in a long run. As a consequence, several illustrative examples are separately carried out with numerical simulations to support the main results of this paper.

Suggested Citation

  • Lu, Ruoxin & Wei, Fengying, 2019. "Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 572-587.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:572-587
    DOI: 10.1016/j.physa.2018.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311415
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    2. Wang, Lianwen & Liu, Zhijun & Zhang, Xingan, 2016. "Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 47-65.
    3. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Ye, Ming & Zhang, Qimin, 2019. "Strong convergence of the partially truncated Euler–Maruyama scheme for a stochastic age-structured SIR epidemic model," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    2. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    4. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    6. Rifhat, Ramziya & Wang, Lei & Teng, Zhidong, 2017. "Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 176-190.
    7. Wen, Buyu & Rifhat, Ramziya & Teng, Zhidong, 2019. "The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 258-271.
    8. Wang, Lianwen & Liu, Zhijun & Guo, Caihong & Li, Yong & Zhang, Xinan, 2021. "New global dynamical results and application of several SVEIS epidemic models with temporary immunity," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. Rajasekar, S.P. & Pitchaimani, M., 2019. "Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 207-221.
    10. El Fatini, Mohamed & Sekkak, Idriss & Laaribi, Aziz, 2019. "A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 151-160.
    11. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    13. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    14. Zhang, Yan & Fan, Kuangang & Gao, Shujing & Liu, Yingfen & Chen, Shihua, 2019. "Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 671-685.
    15. Xin Liu & Zhou-Dao Lu & Ling-Zhi Li, 2018. "The Use of Bolted Side Plates for Shear Strengthening of RC Beams: A Review," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    16. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    17. Raul Nistal & Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2018. "On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties," Mathematics, MDPI, vol. 7(1), pages 1-19, December.
    18. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    19. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    20. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:572-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.