IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2018i1p18-d193058.html
   My bibliography  Save this article

On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties

Author

Listed:
  • Raul Nistal

    (Department of Electricity and Electronics, University of Basque Country, UPV/EHU, 48940 Leioa, Spain)

  • Manuel De la Sen

    (Department of Electricity and Electronics, University of Basque Country, UPV/EHU, 48940 Leioa, Spain)

  • Santiago Alonso-Quesada

    (Department of Electricity and Electronics, University of Basque Country, UPV/EHU, 48940 Leioa, Spain)

  • Asier Ibeas

    (Department of Telecommunications and Systems Engineering, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain)

Abstract

A new discrete SEIADR epidemic model is built based on previous continuous models. The model considers two extra subpopulation, namely, asymptomatic and lying corpses on the usual SEIR models. It can be of potential interest for diseases where infected corpses are infectious like, for instance, Ebola. The model includes two types of vaccinations, a constant one and another proportional to the susceptible subpopulation, as well as a treatment control applied to the infected subpopulation. We study the positivity of the controlled model and the stability of the equilibrium points. Simulations are made in order to provide allocation and examples to the different possible conditions. The equilibrium point with no infection and its stability is related, via the reproduction number values, to the reachability of the endemic equilibrium point.

Suggested Citation

  • Raul Nistal & Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2018. "On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties," Mathematics, MDPI, vol. 7(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2018:i:1:p:18-:d:193058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/1/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/1/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Darabsah, Isam & Yuan, Yuan, 2016. "A time-delayed epidemic model for Ebola disease transmission," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 307-325.
    2. Wei, Fengying & Chen, Fangxiang, 2016. "Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 99-107.
    3. Wang, Lianwen & Liu, Zhijun & Zhang, Xingan, 2016. "Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 47-65.
    4. M. de la Sen & A. Ibeas, 2008. "On the Global Asymptotic Stability of Switched Linear Time-Varying Systems with Constant Point Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2008, pages 1-31, December.
    5. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    6. A. Bilbao-Guillerna & M. De La Sen & A. Ibeas & S. Alonso-Quesada, 2005. "Robustly stable multiestimation scheme for adaptive control and identification with model reduction issues," Discrete Dynamics in Nature and Society, Hindawi, vol. 2005, pages 1-37, January.
    7. Zhijian Wei & Meitao Le, 2015. "Existence and Convergence of the Positive Solutions of a Discrete Epidemic Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-10, June.
    8. Tirumalasetty Chiranjeevi & Raj Kumar Biswas, 2017. "Discrete-Time Fractional Optimal Control," Mathematics, MDPI, vol. 5(2), pages 1-12, April.
    9. De la Sen, M. & Alonso-Quesada, S. & Ibeas, A., 2015. "On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 953-976.
    10. Xinli Wang, 2015. "An SIRS Epidemic Model with Vital Dynamics and a Ratio-Dependent Saturation Incidence Rate," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De la Sen, M. & Alonso-Quesada, S. & Ibeas, A. & Nistal, R., 2019. "On an SEIADR epidemic model with vaccination, treatment and dead-infectious corpses removal controls," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 47-79.
    2. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    3. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    4. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    8. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    9. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    10. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    11. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    12. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    13. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    14. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    15. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    16. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    17. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    18. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    19. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    20. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2018:i:1:p:18-:d:193058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.