IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v86y2023ipbs0301420723008528.html
   My bibliography  Save this article

Dynamic material flow analysis of rhenium in China for 2011–2020

Author

Listed:
  • Mei, Yueru
  • Geng, Yong
  • Xiao, Shijiang
  • Su, Chang
  • Gao, Ziyan
  • Wei, Wendong

Abstract

Rhenium (Re) is one rare and heavy metal element that plays an important role in various fields, such as aerospace applications, petroleum industry, and power generation. However, less attention has been paid to its metabolism patterns. This study employs a dynamic material flow analysis method to investigate the anthropogenic Re cycle in China from 2011 to 2020. The results show that the annual demand for Re had increased from 7.02 tons to 10.41 tons during the study period, in which 44.91% of the total Re was used to produce petro-reforming catalysts and 32.87% of the total Re was used to make aero-engines. A total of 54.94 tons of Re became in-use stock and 18.55 tons were discarded. A significant Re loss (55.92 tons) was generated in the refining and separation stage, mainly due to cost and technological constraints. On the supply side, the domestic primary Re production remained stable in China, but unable to meet the market demand. Therefore, China has to rely on importing Re products, with a net import reliance (NIR) of more than 75% in recent years. The imported Re had increased from 8.68 tons in 2011 to 18.99 tons in 2020. About 85.4% of the imported final products were aero-engines. By identifying several problems hindering the sustainable use of Re in China, we proposed several policy recommendations to improve the overall Re resource efficiency, such as policy and economic supports for Re recycling, enhancing Re's production and utilization technologies, and strengthening Re supply resilience.

Suggested Citation

  • Mei, Yueru & Geng, Yong & Xiao, Shijiang & Su, Chang & Gao, Ziyan & Wei, Wendong, 2023. "Dynamic material flow analysis of rhenium in China for 2011–2020," Resources Policy, Elsevier, vol. 86(PB).
  • Handle: RePEc:eee:jrpoli:v:86:y:2023:i:pb:s0301420723008528
    DOI: 10.1016/j.resourpol.2023.104141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723008528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.104141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christina Licht & Laura Talens Peiró & Gara Villalba, 2015. "Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 890-903, October.
    2. Werner, Tim T. & Mudd, Gavin M. & Jowitt, Simon M. & Huston, David, 2023. "Rhenium mineral resources: A global assessment," Resources Policy, Elsevier, vol. 82(C).
    3. Manley, Ross L. & Alonso, Elisa & Nassar, Nedal T., 2022. "A model to assess industry vulnerability to disruptions in mineral commodity supplies," Resources Policy, Elsevier, vol. 78(C).
    4. Lèbre, Éléonore & Owen, John R. & Kemp, Deanna & Valenta, Rick K., 2022. "Complex orebodies and future global metal supply: An introduction," Resources Policy, Elsevier, vol. 77(C).
    5. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    6. Sun, Xin & Hao, Han & Liu, Zongwei & Zhao, Fuquan, 2020. "Insights into the global flow pattern of manganese," Resources Policy, Elsevier, vol. 65(C).
    7. Henckens, M.L.C.M. & van Ierland, E.C. & Driessen, P.P.J. & Worrell, E., 2016. "Mineral resources: Geological scarcity, market price trends, and future generations," Resources Policy, Elsevier, vol. 49(C), pages 102-111.
    8. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    9. Alexandre Charpentier Poncelet & Christoph Helbig & Philippe Loubet & Antoine Beylot & Stéphanie Muller & Jacques Villeneuve & Bertrand Laratte & Andrea Thorenz & Axel Tuma & Guido Sonnemann, 2022. "Losses and lifetimes of metals in the economy," Nature Sustainability, Nature, vol. 5(8), pages 717-726, August.
    10. Griffin, Gillian & Gaustad, Gabrielle & Badami, Kedar, 2019. "A framework for firm-level critical material supply management and mitigation," Resources Policy, Elsevier, vol. 60(C), pages 262-276.
    11. Alexandre Charpentier Poncelet & Christoph Helbig & Philippe Loubet & Antoine Beylot & Stéphanie Muller & Jacques Villeneuve & Bertrand Laratte & Andrea Thorenz & Axel Tuma & Guido Sonnemann, 2022. "Author Correction: Losses and lifetimes of metals in the economy," Nature Sustainability, Nature, vol. 5(6), pages 552-552, June.
    12. Li, Yongling & Wang, Jiaoe & Huang, Jie & Chen, Zhuo, 2022. "Impact of COVID-19 on domestic air transportation in China," Transport Policy, Elsevier, vol. 122(C), pages 95-103.
    13. Yong Geng & Joseph Sarkis & Raimund Bleischwitz, 2023. "How to build a circular economy for rare-earth elements," Nature, Nature, vol. 619(7969), pages 248-251, July.
    14. Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
    15. Luca Ciacci & Tim T. Werner & Ivano Vassura & Fabrizio Passarini, 2019. "Backlighting the European Indium Recycling Potentials," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 426-437, April.
    16. Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zewen & Geng, Yong & Wei, Wendong & Zhong, Chen, 2022. "Assessing samarium resource efficiency in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 76(C).
    2. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
    3. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    4. Jessie E. Bradley & Willem L. Auping & René Kleijn & Jan H. Kwakkel & Benjamin Sprecher, 2024. "Reassessing tin circularity and criticality," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 232-246, April.
    5. Tian, Xu & Geng, Yong & Sarkis, Joseph & Gao, Cuixia & Sun, Xin & Micic, Tatyana & Hao, Han & Wang, Xin, 2021. "Features of critical resource trade networks of lithium-ion batteries," Resources Policy, Elsevier, vol. 73(C).
    6. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Zhu, Yongguang & Su, Hui & Xue, Shuangjiao, 2020. "Synthesized indicator for evaluating security of strategic minerals in China: A case study of lithium," Resources Policy, Elsevier, vol. 69(C).
    7. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Dynamic material flow analysis of antimony resources in China," Resources Policy, Elsevier, vol. 86(PB).
    8. Pothen, Frank & Hundt, Carolin, 2024. "European post-consumer steel scrap in 2050: A review of estimates and modeling assumptions," Jena Contributions to Economic Research Jahrgang 2024/1, Ernst-Abbe-Hochschule Jena – University of Applied Sciences, Department of Business Administration.
    9. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
    10. Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).
    11. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    12. Christoph Helbig & Alex M. Bradshaw & Andrea Thorenz & Axel Tuma, 2020. "Supply Risk Considerations for the Elements in Nickel-Based Superalloys," Resources, MDPI, vol. 9(9), pages 1-16, August.
    13. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    14. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    15. Dhiya Durani Sofian Azizi & Marlia M. Hanafiah & Kok Sin Woon, 2023. "Material Flow Analysis in WEEE Management for Circular Economy: A Content Review on Applications, Limitations, and Future Outlook," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    16. Wu, Congcong & Gao, Xiangyun & Xi, Xian & Zhao, Yiran & Li, Yu, 2021. "The stability optimization of the international lithium trade," Resources Policy, Elsevier, vol. 74(C).
    17. West, James, 2020. "Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future," Resources Policy, Elsevier, vol. 65(C).
    18. Zhou, Na & Su, Hui & Wu, Qiaosheng & Hu, Shougeng & Xu, Deyi & Yang, Danhui & Cheng, Jinhua, 2022. "China's lithium supply chain: Security dynamics and policy countermeasures," Resources Policy, Elsevier, vol. 78(C).
    19. Fernandez, Viviana & Pastén-Henríquez, Boris & Tapia-Griñen, Pablo & Wagner, Rodrigo, 2023. "Commodity prices under the threat of operational disruptions: Labor strikes at copper mines," Journal of Commodity Markets, Elsevier, vol. 32(C).
    20. Zhang, Hongwei & Wang, Xinyi & Tang, Jing & Guo, Yaoqi, 2022. "The impact of international rare earth trade competition on global value chain upgrading from the industrial chain perspective," Ecological Economics, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:86:y:2023:i:pb:s0301420723008528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.