IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v44y2015icp81-93.html
   My bibliography  Save this article

Thorium: Crustal abundance, joint production, and economic availability

Author

Listed:
  • Jordan, Brett W.
  • Eggert, Roderick G.
  • Dixon, Brent W.
  • Carlsen, Brett W.

Abstract

Recently, interest in thorium׳s potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth׳s crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuel cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. Environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.

Suggested Citation

  • Jordan, Brett W. & Eggert, Roderick G. & Dixon, Brent W. & Carlsen, Brett W., 2015. "Thorium: Crustal abundance, joint production, and economic availability," Resources Policy, Elsevier, vol. 44(C), pages 81-93.
  • Handle: RePEc:eee:jrpoli:v:44:y:2015:i:c:p:81-93
    DOI: 10.1016/j.resourpol.2015.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420715000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2015.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    2. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    2. Juan Ignacio Guzmán & Enrique Silva, 2018. "Copper price determination: fundamentals versus non-fundamentals," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(3), pages 283-300, October.
    3. Olga Fedorova & Elizaveta Vershinina & Svetlana Krasitskaya & Ivan Tananaev & Boris Myasoedov & Marco Vocciante, 2020. "Optimal Monazite Concentration Processes for the Extraction of Uranium and Thorium Fuel Material," Energies, MDPI, vol. 13(18), pages 1-10, September.
    4. Emilio Castillo & Roderick Eggert, 2019. "Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources," Working Papers 2019-02, Colorado School of Mines, Division of Economics and Business.
    5. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    6. Abdulrahman Masoud Alotaibi & Aznan Fazli Ismail, 2022. "Modification of Clinoptilolite as a Robust Adsorbent for Highly-Efficient Removal of Thorium (IV) from Aqueous Solutions," IJERPH, MDPI, vol. 19(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    2. Arnaut, Javier L., 2022. "The importance of uranium prices and structural shocks: Some implications for Greenland," Energy Policy, Elsevier, vol. 161(C).
    3. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    4. Philip Maxwell & Mauricio Mora, 2020. "Lithium and Chile: looking back and looking forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 57-71, July.
    5. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    6. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    7. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.
    8. Ziemann, Saskia & Weil, Marcel & Schebek, Liselotte, 2012. "Tracing the fate of lithium––The development of a material flow model," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 26-34.
    9. Knut Einar Rosendahl & Diana Roa Rubiano, 2019. "How Effective is Lithium Recycling as a Remedy for Resource Scarcity?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 985-1010, November.
    10. Meshram, Pratima & Pandey, B.D. & Abhilash,, 2019. "Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries – A resource overview," Resources Policy, Elsevier, vol. 60(C), pages 9-22.
    11. Yellishetty, Mohan & Ranjith, P.G. & Tharumarajah, A., 2010. "Iron ore and steel production trends and material flows in the world: Is this really sustainable?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1084-1094.
    12. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    13. Manuel Landajo & María José Presno & Paula Fernández González, 2021. "Stationarity in the Prices of Energy Commodities. A Nonparametric Approach," Energies, MDPI, vol. 14(11), pages 1-16, June.
    14. Daw, Georges, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Resources Policy, Elsevier, vol. 53(C), pages 173-189.
    15. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    16. Zeng, Xianlai & Li, Jinhui, 2013. "Implications for the carrying capacity of lithium reserve in China," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 58-63.
    17. Sauer, Ildo L. & Escobar, Javier F. & da Silva, Mauro F.P. & Meza, Carlos G. & Centurion, Carlos & Goldemberg, José, 2015. "Bolivia and Paraguay: A beacon for sustainable electric mobility?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 910-925.
    18. Considine, Timothy J., 2019. "The market impacts of US uranium import quotas," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    19. James Otto, 2020. "Resources and reserves: thoughts on their evolution," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 253-255, July.
    20. Kuangyuan Zhang & Richard Olawoyin & Antonio Nieto & Andrew N. Kleit, 2018. "Risk of commodity price, production cost and time to build in resource economics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2521-2544, December.

    More about this item

    Keywords

    Availability; Thorium; Joint production; Cumulative availability curve; Mine cost curve;
    All these keywords.

    JEL classification:

    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • L72 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Other Nonrenewable Resources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:44:y:2015:i:c:p:81-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.