IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v99y2022ics0966692322000217.html
   My bibliography  Save this article

An analysis of the Chinese scheduled freighter network during the first year of the COVID-19 pandemic

Author

Listed:
  • Deng, Yu
  • Zhang, Yahua
  • Wang, Kun

Abstract

COVID-19 caused the vast majority of passenger flights to be grounded, but the crisis raised the importance of the network of dedicated cargo flights and, therefore, interest in its development. This paper aims to evaluate the Chinese scheduled freighter network (CSFN) via its topological properties and to explore its changes following the COVID-19 pandemic. Using spatial analysis with the complex network theory (CNT), the paper found that the CSFN displays small-world and scale-free network properties, similar to that of air passenger network. Hangzhou, Shenzhen and Nanjing are the dominant national hubs in the CSFN because they host the headquarters of many e-commerce giant enterprises and have relatively underutilized airport capacities. The CSFN has improved since the COVID-19 pandemic, with increased network average degree, clustering coefficient, and closeness, and reduced average path. These improvements were mainly driven by major hub cities whose centralities had been strengthened with more route connections. Since China's air passenger traffic had quickly restored in the second half of 2020, we argue that the changes in the CSFN during COVID-19 were unlikely to be a result of the substitution effect between freighter and passenger aircraft. It was more likely a result of the higher air cargo demand during the pandemic and airlines' realisation of the importance of freighter operations in China.

Suggested Citation

  • Deng, Yu & Zhang, Yahua & Wang, Kun, 2022. "An analysis of the Chinese scheduled freighter network during the first year of the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:jotrge:v:99:y:2022:i:c:s0966692322000217
    DOI: 10.1016/j.jtrangeo.2022.103298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322000217
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yonglei & Yao, Baozhen & Wang, Lu & Feng, Tao & Kong, Lu, 2017. "Evolution trends of the network structure of Spring Airlines in China: A temporal and spatial analysis," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 18-30.
    2. Budd, Lucy & Ison, Stephen, 2017. "The role of dedicated freighter aircraft in the provision of global airfreight services," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 34-40.
    3. Zhang, Yahua & Zhang, Anming & Wang, Jiaoe, 2020. "Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 94(C), pages 34-42.
    4. Walcott, Susan M. & Fan, Zhang, 2017. "Comparison of major air freight network hubs in the U.S. and China," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 64-72.
    5. Malighetti, Paolo & Martini, Gianmaria & Redondi, Renato & Scotti, Davide, 2019. "Air transport networks of global integrators in the more liberalized Asian air cargo industry," Transport Policy, Elsevier, vol. 80(C), pages 12-23.
    6. Lange, Anne, 2019. "Does cargo matter? The impact of air cargo operations on departure on-time performance for combination carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 214-223.
    7. Gardiner, John & Ison, Stephen, 2008. "The geography of non-integrated cargo airlines: an international study," Journal of Transport Geography, Elsevier, vol. 16(1), pages 55-62.
    8. Zhang, Anming & Hui, Yer Van & Leung, Lawrence, 2004. "Air cargo alliances and competition in passenger markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(2), pages 83-100, March.
    9. Hossain, Md. Murad & Alam, Sameer, 2017. "A complex network approach towards modeling and analysis of the Australian Airport Network," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 1-9.
    10. Bowen, John T., 2012. "A spatial analysis of FedEx and UPS: hubs, spokes, and network structure," Journal of Transport Geography, Elsevier, vol. 24(C), pages 419-431.
    11. Van Asch, Thomas & Dewulf, Wouter & Kupfer, Franziska & Cárdenas, Ivan & Van de Voorde, Eddy, 2020. "Cross-border e-commerce logistics – Strategic success factors for airports," Research in Transportation Economics, Elsevier, vol. 79(C).
    12. Boonekamp, Thijs & Burghouwt, Guillaume, 2017. "Measuring connectivity in the air freight industry," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 81-94.
    13. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    14. Kupfer, Franziska & Kessels, Roselinde & Goos, Peter & Van de Voorde, Eddy & Verhetsel, Ann, 2016. "The origin–destination airport choice for all-cargo aircraft operations in Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 53-74.
    15. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    16. Paolo Malighetti & Gianmaria Martini & Renato Redondi & Davide Scotti, 2019. "Integrators’ Air Transport Networks in Europe," Networks and Spatial Economics, Springer, vol. 19(2), pages 557-581, June.
    17. Ma, Wenliang & Wang, Qiang & Yang, Hangjun & Zhang, Anming & Zhang, Yahua, 2019. "Effects of Beijing-Shanghai high-speed rail on air travel: Passenger types, airline groups and tacit collusion," Research in Transportation Economics, Elsevier, vol. 74(C), pages 64-76.
    18. Tisdall, Lucas & Zhang, Yahua & Zhang, Anming, 2021. "COVID-19 impacts on general aviation – Comparative experiences, governmental responses and policy imperatives," Transport Policy, Elsevier, vol. 110(C), pages 273-280.
    19. Xue, Dabin & Liu, Zhizhao & Wang, Bing & Yang, Jian, 2021. "Impacts of COVID-19 on aircraft usage and fuel consumption: A case study on four Chinese international airports," Journal of Air Transport Management, Elsevier, vol. 95(C).
    20. Guida, Michele & Maria, Funaro, 2007. "Topology of the Italian airport network: A scale-free small-world network with a fractal structure?," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 527-536.
    21. Wang, Jiaoe & Mo, Huihui & Wang, Fahui & Jin, Fengjun, 2011. "Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 712-721.
    22. Lin, Cheng-Chang & Chen, Yin-Chieh, 2003. "The integration of Taiwanese and Chinese air networks for direct air cargo services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 629-647, August.
    23. Zhang, Anming & Zhang, Yimin, 2002. "Issues on liberalization of air cargo services in international aviation," Journal of Air Transport Management, Elsevier, vol. 8(5), pages 275-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Su & Baoyang Hu & Yipeng Jiang & Zhenchao Zhang & Zeyang Li, 2022. "Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission," Mathematics, MDPI, vol. 10(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Asch, Thomas & Dewulf, Wouter & Kupfer, Franziska & Cárdenas, Ivan & Van de Voorde, Eddy, 2020. "Cross-border e-commerce logistics – Strategic success factors for airports," Research in Transportation Economics, Elsevier, vol. 79(C).
    2. Bombelli, Alessandro, 2020. "Integrators' global networks: A topology analysis with insights into the effect of the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 87(C).
    3. Gong, Qiang & Wang, Kun & Fan, Xingli & Fu, Xiaowen & Xiao, Yi-bin, 2018. "International trade drivers and freight network analysis - The case of the Chinese air cargo sector," Journal of Transport Geography, Elsevier, vol. 71(C), pages 253-262.
    4. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    5. Silva, Thiago Christiano & Dias, Felipe A.M. & dos Reis, Vinicius E. & Tabak, Benjamin M., 2022. "The role of network topology in competition and ticket pricing in air transportation: Evidence from Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    6. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    7. Lázaro Florido-Benítez, 2023. "The Role of the Top 50 US Cargo Airports and 25 Air Cargo Airlines in the Logistics of E-Commerce Companies," Logistics, MDPI, vol. 7(1), pages 1-27, February.
    8. Chung, Hye Min & Kwon, Oh Kyoung & Han, Ok Soon & Kim, Hwa-Joong, 2020. "Evolving network characteristics of the asian international aviation market: A weighted network approach," Transport Policy, Elsevier, vol. 99(C), pages 299-313.
    9. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    10. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    11. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    13. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    14. Masilonyane Mokhele & Tholang Mokhele, 2023. "Characterization of Airfreight-Related Logistics Firms in the City of Cape Town, South Africa," Logistics, MDPI, vol. 7(3), pages 1-21, July.
    15. Wu, Chuntao & Liao, Maozhu & Zhang, Yahua & Luo, Mingzhi & Zhang, Guoquan, 2020. "Network development of low-cost carriers in China's domestic market," Journal of Transport Geography, Elsevier, vol. 84(C).
    16. Hongqi Li & Haotian Wang & Ming Bai & Bin Duan, 2018. "The Structure and Periodicity of the Chinese Air Passenger Network," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    17. Malighetti, Paolo & Martini, Gianmaria & Redondi, Renato & Scotti, Davide, 2019. "Air transport networks of global integrators in the more liberalized Asian air cargo industry," Transport Policy, Elsevier, vol. 80(C), pages 12-23.
    18. Lotti, Raoni & Caetano, Mauro, 2018. "The airport choice of exporters for fruit from Brazil," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 104-112.
    19. Mueller, Falko, 2022. "Examining COVID-19-triggered changes in spatial connectivity patterns in the European air transport network up to June 2021," Research in Transportation Economics, Elsevier, vol. 94(C).
    20. Umut ERDEM & Dimitrios TSIOTAS & K. Mert CUBUKCU, 2019. "Population Dynamics In Network Topology: The Case Of Air Transport Network In Turkey," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 11(2), pages 5-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:99:y:2022:i:c:s0966692322000217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.