IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v85y2020ics0966692319306210.html
   My bibliography  Save this article

Considering context and dynamics: A classification of transit-orientated development for New York City

Author

Listed:
  • Liu, Yunzhe
  • Singleton, Alex
  • Arribas-Bel, Daniel

Abstract

Transit-Oriented Development (TOD) is a widely recognised planning strategy for encouraging the use of mass and active transport over other less sustainable modes. Typological approaches to TOD areas can be utilised to either retrospectively or prospectively assist urban planners with evidence-based information on the delivery or monitoring of TOD. However, existing studies aiming to create TOD typologies overwhelmingly concentrate input measures around three dimensions of: density, diversity and design; which might be argued as not effectively capturing a fuller picture of context. Moreover, such emphasis on static attributes overlooks the importance of human mobility patterns that are signatures of the dynamics of cities.

Suggested Citation

  • Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692319306210
    DOI: 10.1016/j.jtrangeo.2020.102711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319306210
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keemin Sohn, 2013. "Feature Mapping the Seoul Metro Station Areas Based on a Self-Organizing Map," Journal of Urban Technology, Taylor & Francis Journals, vol. 20(4), pages 23-42, October.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Matthias Schonlau, 2002. "The clustergram: A graph for visualizing hierarchical and nonhierarchical cluster analyses," Stata Journal, StataCorp LP, vol. 2(4), pages 391-402, November.
    4. Atkinson-Palombo, Carol & Kuby, Michael J., 2011. "The geography of advance transit-oriented development in metropolitan Phoenix, Arizona, 2000–2007," Journal of Transport Geography, Elsevier, vol. 19(2), pages 189-199.
    5. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    6. Chen, Cynthia & Chen, Jason & Barry, James, 2009. "Diurnal pattern of transit ridership: a case study of the New York City subway system," Journal of Transport Geography, Elsevier, vol. 17(3), pages 176-186.
    7. Ren Thomas & Dorina Pojani & Sander Lenferink & Luca Bertolini & Dominic Stead & Erwin van der Krabben, 2018. "Is transit-oriented development (TOD) an internationally transferable policy concept?," Regional Studies, Taylor & Francis Journals, vol. 52(9), pages 1201-1213, September.
    8. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    9. Dea van Lierop & Kees Maat & Ahmed El-Geneidy, 2017. "Talking TOD: learning about transit-oriented development in the United States, Canada, and the Netherlands," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 10(1), pages 49-62, January.
    10. Staricco, Luca & Vitale Brovarone, Elisabetta, 2018. "Promoting TOD through regional planning. A comparative analysis of two European approaches," Journal of Transport Geography, Elsevier, vol. 66(C), pages 45-52.
    11. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    12. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    13. Bhattacharjee, Sutapa & Goetz, Andrew R., 2016. "The rail transit system and land use change in the Denver metro region," Journal of Transport Geography, Elsevier, vol. 54(C), pages 440-450.
    14. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Classifying railway stations for strategic transport and land use planning: Context matters!," Journal of Transport Geography, Elsevier, vol. 19(4), pages 670-679.
    15. Nasri, Arefeh & Zhang, Lei, 2014. "The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 172-179.
    16. Mi-Kyeong Kim & Sangpil Kim & Hong-Gyoo Sohn, 2018. "Relationship between Spatio-Temporal Travel Patterns Derived from Smart-Card Data and Local Environmental Characteristics of Seoul, Korea," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    17. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    18. Chavez-Baeza, Carlos & Sheinbaum-Pardo, Claudia, 2014. "Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area," Energy, Elsevier, vol. 66(C), pages 624-634.
    19. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Yonggeun & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Activity-based TOD typology for seoul transit station areas using smart-card data," Journal of Transport Geography, Elsevier, vol. 105(C).
    2. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    4. Rao, Fujie & Pafka, Elek, 2021. "Shopping morphologies of urban transit station areas: A comparative study of central city station catchments in Toronto, San Francisco, and Melbourne," Journal of Transport Geography, Elsevier, vol. 96(C).
    5. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    3. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    4. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    5. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    7. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    8. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    9. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    10. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    11. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    12. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    13. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    14. Lewis, Rebecca & Margerum, Richard D., 2020. "Do urban centers support regional goals? An assessment of regional planning in Denver," Land Use Policy, Elsevier, vol. 99(C).
    15. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    16. Zhao, Pengjun & Yang, Hanzi & Kong, Lu & Liu, Yunshu & Liu, Di, 2018. "Disintegration of metro and land development in transition China: A dynamic analysis in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 290-307.
    17. Moyano, Amparo & Solís, Eloy & Díaz-Burgos, Elena & Rodrigo, Alejandro & Coronado, José M., 2023. "Typologies of stations’ catchment areas in metropolitan urban peripheries: From car-oriented to sustainable urban strategies," Land Use Policy, Elsevier, vol. 134(C).
    18. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    19. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    20. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692319306210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.