IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics0966692324002898.html
   My bibliography  Save this article

An adaptive OD flow clustering method to identify heterogeneous urban mobility trends

Author

Listed:
  • Guo, Xiaogang
  • Fang, Mengyuan
  • Tang, Luliang
  • Kan, Zihan
  • Yang, Xue
  • Pei, Tao
  • Li, Qingquan
  • Li, Chaokui

Abstract

Origin-Destination (OD) flow, as an abstract representation of the object's movement or interaction, has been used to reveal the movement patterns of human activities and the coupling process of the human-land system. As a developing spatial analysis method, OD flow clustering can be used to identify the dominant trends and spatial structures of urban mobility. However, urban flow exhibits universal heterogeneity, which is mainly manifested in irregular shapes, uneven distribution, and obvious scale differences. The existing methods are constrained by specific spatial scales and sensitive parameter settings, making it difficult to reveal heterogeneous urban mobility patterns within travel OD data. In this paper, we propose an OD flow analysis method that integrates spatial statistics and density clustering. This method can determine parameter values from datasets without manual intervention and adaptively identify multi-scale mixed OD flow clusters. In the simulation experiment, the proposed method accurately detects all preset OD clusters with less noise. It outperforms the baseline methods in terms of Silhouette Coefficient, V-measure, and Fowlkes Mallows index. As a case study, this method is applied to OD data from Chengdu, China, extracting 63 representative flow clusters and revealing the trends of heterogeneous urban mobility across different lengths and densities for public transit optimization.

Suggested Citation

  • Guo, Xiaogang & Fang, Mengyuan & Tang, Luliang & Kan, Zihan & Yang, Xue & Pei, Tao & Li, Qingquan & Li, Chaokui, 2025. "An adaptive OD flow clustering method to identify heterogeneous urban mobility trends," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692324002898
    DOI: 10.1016/j.jtrangeo.2024.104080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324002898
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bahbouh, Kinan & Wagner, James R. & Morency, Catherine & Berdier, Chantal, 2017. "Travel demand corridors: Modelling approach and relevance in the planning process," Journal of Transport Geography, Elsevier, vol. 58(C), pages 196-208.
    2. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Svante Berglund & Anders Karlström, 1999. "Identifying local spatial association in flow data," Journal of Geographical Systems, Springer, vol. 1(3), pages 219-236, October.
    4. Barroso, Joana Maia Fernandes & Albuquerque-Oliveira, João Lucas & Oliveira-Neto, Francisco Moraes, 2020. "Correlation analysis of day-to-day origin-destination flows and traffic volumes in urban networks," Journal of Transport Geography, Elsevier, vol. 89(C).
    5. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Clark, Ben & Chatterjee, Kiron & Melia, Steve, 2016. "Changes to commute mode: The role of life events, spatial context and environmental attitude," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 89-105.
    7. Kong, Hui & Zhang, Xiaohu & Zhao, Jinhua, 2020. "How does ridesourcing substitute for public transit? A geospatial perspective in Chengdu, China," Journal of Transport Geography, Elsevier, vol. 86(C).
    8. Yuxuan Wang & Jinyu Chen & Ning Xu & Wenjing Li & Qing Yu & Xuan Song, 2020. "GPS Data in Urban Online Car-Hailing: Simulation on Optimization and Prediction in Reducing Void Cruising Distance," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, November.
    9. Mile Bošnjak & Vlatka Bilas & Ivan Novak, 2019. "Sustainability of Merchandise Trade Flows between Croatia and Other EU Member States - Panel Cointegration Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 66(1), pages 113-131.
    10. Christopher D. Higgins & Matthias N. Sweet & Pavlos S. Kanaroglou, 2018. "All minutes are not equal: travel time and the effects of congestion on commute satisfaction in Canadian cities," Transportation, Springer, vol. 45(5), pages 1249-1268, September.
    11. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    2. Loo, Becky P.Y. & Tsoi, Ka Ho, 2024. "Stressors for bus commuters and ways of improving bus journeys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    3. Chunguang Liu & Xinyu Zuo & Xiaoning Gu & Mengru Shao & Chao Chen, 2023. "Activity Duration under the COVID-19 Pandemic: A Comparative Analysis among Different Urbanized Areas Using a Hazard-Based Duration Model," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    4. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    5. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
    7. Haseeb, Attiya & Mitra, Raktim, 2024. "Travel behaviour changes among young adults and associated implications for social sustainability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    8. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Doddamani, Chetan & Manoj, M., 2022. "Residential relocation and changes in household vehicle ownership and travel behavior: Exploring the context of Hubli-Dharwad twin-cities in India from a planning viewpoint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 134-155.
    10. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    11. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    12. Majumdar, Bandhan Bandhu & Jayakumar, Malavika & Sahu, Prasanta K. & Potoglou, Dimitris, 2021. "Identification of key determinants of travel satisfaction for developing policy instrument to improve quality of life: An analysis of commuting in Delhi," Transport Policy, Elsevier, vol. 110(C), pages 281-292.
    13. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    14. André de Palma & Lucas Javaudin & Patrick Stokkink & Léandre Tarpin-Pitre, 2021. "Modelling Ridesharing in a Large Network with Dynamic Congestion," THEMA Working Papers 2021-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    15. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    16. Apantri Peungnumsai & Apichon Witayangkurn & Masahiko Nagai & Hiroyuki Miyazaki, 2018. "A Taxi Zoning Analysis Using Large-Scale Probe Data: A Case Study for Metropolitan Bangkok," The Review of Socionetwork Strategies, Springer, vol. 12(1), pages 21-45, June.
    17. Wang, Yongcheng & Wong, Yiik Diew & Du, Bo & Lum, Kit Meng & Goh, Kelvin, 2024. "Sociospatial inclusiveness of streets through the lens of urban pedestrian mobilities: Go-along interviews with less mobile pedestrians in Singapore," Journal of Transport Geography, Elsevier, vol. 115(C).
    18. Xiaojian Hu & Nan Wu & Nuo Chen, 2021. "Young People’s Behavioral Intentions towards Low-Carbon Travel: Extending the Theory of Planned Behavior," IJERPH, MDPI, vol. 18(5), pages 1-15, February.
    19. Bi, Hui & Ye, Zhirui & Hu, Liyang & Zhu, He, 2021. "Why they don't choose bus service? Understanding special online car-hailing behavior near bus stops," Transport Policy, Elsevier, vol. 114(C), pages 280-297.
    20. Jing, Fei & Zhang, Zhong & Wu, Jian-Liang & Hu, Die & Zhang, Zi-Ke, 2025. "Quantifying and predicting evolutionary networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s0966692324002898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.