IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v33y2005i4p357-362.html
   My bibliography  Save this article

A slack-based measure of efficiency in context-dependent data envelopment analysis

Author

Listed:
  • Morita, Hiroshi
  • Hirokawa, Koichiro
  • Zhu, Joe

Abstract

Data envelopment analysis (DEA) has been proven as an excellent data-oriented performance evaluation method when multiple inputs and outputs are present in a set of peer decision-making units (DMUs). In the DEA literature, a context-dependent DEA is developed to provide finer evaluation results by examining the efficiency of DMUs in specific performance levels based upon radial DEA efficiency scores. In DEA, non-zero input and output slacks are very likely to present after the radial efficiency score improvement. Often, these non-zero slack values represent a substantial amount of inefficiency. Therefore, in order to fully measure the inefficiency in DMU's performance, it is very important to also consider the inefficiency represented by the non-zero slacks in the context-dependent DEA. This study proposes a slack-based context-dependent DEA which allows a full evaluation of inefficiency in a DMUs performance. By using slack-based efficiency measure, we obtain different frontier levels and more appropriate performance benchmarks for inefficient DMUs.

Suggested Citation

  • Morita, Hiroshi & Hirokawa, Koichiro & Zhu, Joe, 2005. "A slack-based measure of efficiency in context-dependent data envelopment analysis," Omega, Elsevier, vol. 33(4), pages 357-362, August.
  • Handle: RePEc:eee:jomega:v:33:y:2005:i:4:p:357-362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00091-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    2. Jahanshahloo, Gholam Reza & Junior, Helcio Vieira & Lotfi, Farhad Hosseinzadeh & Akbarian, Darush, 2007. "A new DEA ranking system based on changing the reference set," European Journal of Operational Research, Elsevier, vol. 181(1), pages 331-337, August.
    3. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    4. Kourtit Karima & Nijkamp Peter & Suzuki Soushi, 2016. "New Urban Economic Agents: A Comparative Analysis of High-Performance New Entrepreneurs," Quaestiones Geographicae, Sciendo, vol. 35(4), pages 5-22, December.
    5. Afsharian, Mohsen & Kamali, Sara & Ahn, Heinz & Bogetoft, Peter, 2024. "Individualized second stage corrections in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 563-577.
    6. Constantino J. Garcia Martin & Amparo Medal-Bartual & Marta Peris-Ortiz, 2014. "Analysis of efficiency and profitability of franchise services," The Service Industries Journal, Taylor & Francis Journals, vol. 34(9-10), pages 796-810, July.
    7. Fu-Chiang Yang & Rui-Hsin Kao & Yi-Tui Chen & Yueh-Fei Ho & Cheng-Chung Cho & Shi-Wei Huang, 2018. "A Common Weight Approach to Construct Composite Indicators: The Evaluation of Fourteen Emerging Markets," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(2), pages 463-479, June.
    8. Kim, Nam Hyok & He, Feng & Zhang, Hongjie & Hong, Kwon Ryong & Ri, Kwang-Chol, 2023. "A data envelopment analysis-based clustering approach under dynamic situations," European Journal of Operational Research, Elsevier, vol. 311(1), pages 251-262.
    9. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    10. Stange, Henriette & Lissitsa, Alexej, 2003. "Russischer Agrarsektor Im Aufschwung? Eine Analyse Der Technischen Und Skaleneffizienz Der Agrarunternehmen," IAMO Discussion Papers 14913, Institute of Agricultural Development in Transition Economies (IAMO).
    11. Jamal Ouenniche & Kaoru Tone, 2017. "An out-of-sample evaluation framework for DEA with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 254(1), pages 235-250, July.
    12. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    13. Jie Wu & Junfei Chu & Qingyuan Zhu & Pengzhen Yin & Liang Liang, 2016. "DEA cross-efficiency evaluation based on satisfaction degree: an application to technology selection," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 5990-6007, October.
    14. Huyen Nguyen-Thi-Thanh, 2006. "On the Use of Data Envelopment Analysis in Hedge Fund Performance Appraisal," Working Papers halshs-00120292, HAL.
    15. da Cruz, Nuno Ferreira & Marques, Rui Cunha, 2014. "Revisiting the determinants of local government performance," Omega, Elsevier, vol. 44(C), pages 91-103.
    16. Feng Dong & Ruyin Long & Zhengfu Bian & Xihui Xu & Bolin Yu & Ying Wang, 2017. "Applying a Ruggiero three-stage super-efficiency DEA model to gauge regional carbon emission efficiency: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1453-1468, July.
    17. Kadziński, Miłosz & Labijak, Anna & Napieraj, Małgorzata, 2017. "Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports," Omega, Elsevier, vol. 67(C), pages 1-18.
    18. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    19. Cheng, Gang & Qian, Zhenhua & Zervopoulos, Panagiotis, 2011. "Overcoming the infeasibility of super-efficiency DEA model: a model with generalized orientation," MPRA Paper 31991, University Library of Munich, Germany.
    20. Azadeh, A. & Amalnick, M.S. & Ghaderi, S.F. & Asadzadeh, S.M., 2007. "An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors," Energy Policy, Elsevier, vol. 35(7), pages 3792-3806, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:33:y:2005:i:4:p:357-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.