IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v28y2000i3p313-326.html
   My bibliography  Save this article

A comparison of four methods for minimizing total tardiness on a single processor with sequence dependent setup times

Author

Listed:
  • Tan, Keah-Choon
  • Narasimhan, Ram
  • Rubin, Paul A.
  • Ragatz, Gary L.

Abstract

Much of the research on operations scheduling problems has either ignored setup times or assumed that setup times on each machine are independent of the job sequence. This paper considers the problem of scheduling a single machine for minimizing total tardiness in a sequence dependent setup environment. The comparative performance of branch-and-bound, genetic search, simulated annealing and random-start pairwise interchange was evaluated in this problem setting. The experimental results suggest that simulated annealing and random-start pairwise interchange are viable solution techniques that can yield good solutions to a large combinatorial problem when considering the tardiness objective with sequence dependent setup times. However, branch-and-bound may be the preferred solution technique in solving smaller problems, and it is the only solution technique tested that will confirm an optimum solution has been reached. The methods considered in this research offer promise to deal with a class of scheduling problems, which have been considered difficult by both researchers and practitioners.

Suggested Citation

  • Tan, Keah-Choon & Narasimhan, Ram & Rubin, Paul A. & Ragatz, Gary L., 2000. "A comparison of four methods for minimizing total tardiness on a single processor with sequence dependent setup times," Omega, Elsevier, vol. 28(3), pages 313-326, June.
  • Handle: RePEc:eee:jomega:v:28:y:2000:i:3:p:313-326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00050-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, K. C. & Narasimhan, R., 1997. "Minimizing tardiness on a single processor with sequence-dependent setup times: a simulated annealing approach," Omega, Elsevier, vol. 25(6), pages 619-634, December.
    2. Chris N. Potts & Luk N. Van Wassenhove, 1985. "A Branch and Bound Algorithm for the Total Weighted Tardiness Problem," Operations Research, INFORMS, vol. 33(2), pages 363-377, April.
    3. Potts, C.N. & Van Wassenhove, L.N., 1987. "Dynamic programming and decomposition approaches for the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 32(3), pages 405-414, December.
    4. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    5. Hamilton Emmons, 1969. "One-Machine Sequencing to Minimize Certain Functions of Job Tardiness," Operations Research, INFORMS, vol. 17(4), pages 701-715, August.
    6. Shang, Jen S., 1993. "Multicriteria facility layout problem: An integrated approach," European Journal of Operational Research, Elsevier, vol. 66(3), pages 291-304, May.
    7. van Ginneken, Sandra & van Iwaarden, Theo, 1989. "Alcohol control policy in The Netherlands," Health Policy, Elsevier, vol. 13(2), pages 109-113, November.
    8. A. G. Lockett & A. P. Muhlemann, 1972. "Technical Note—A Scheduling Problem Involving Sequence Dependent Changeover Times," Operations Research, INFORMS, vol. 20(4), pages 895-902, August.
    9. Szwarc, Wlodzimierz & Mukhopadhyay, Samar K., 1996. "Solution of the generalized Townsend single machine scheduling model," European Journal of Operational Research, Elsevier, vol. 91(1), pages 203-210, May.
    10. A. H. G. Rinnooy Kan & B. J. Lageweg & J. K. Lenstra, 1975. "Minimizing Total Costs in One-Machine Scheduling," Operations Research, INFORMS, vol. 23(5), pages 908-927, October.
    11. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanen Akrout & Bassem Jarboui & Patrick Siarry & Abdelwaheb Rebaï, 2012. "A GRASP based on DE to solve single machine scheduling problem with SDST," Computational Optimization and Applications, Springer, vol. 51(1), pages 411-435, January.
    2. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    3. Zhang, Yi & Li, Xiaoping & Wang, Qian, 2009. "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization," European Journal of Operational Research, Elsevier, vol. 196(3), pages 869-876, August.
    4. Luo, Xiaochuan & Chu, Chengbin, 2007. "A branch-and-bound algorithm of the single machine schedule with sequence-dependent setup times for minimizing maximum tardiness," European Journal of Operational Research, Elsevier, vol. 180(1), pages 68-81, July.
    5. C Gagné & M Gravel & W L Price, 2005. "Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 687-698, June.
    6. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
    7. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    8. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, K. C. & Narasimhan, R., 1997. "Minimizing tardiness on a single processor with sequence-dependent setup times: a simulated annealing approach," Omega, Elsevier, vol. 25(6), pages 619-634, December.
    2. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    3. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    4. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    5. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
    6. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
    7. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    8. Somaye Geramipour & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2017. "Maximizing the profit in customer’s order acceptance and scheduling problem with weighted tardiness penalty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 89-101, January.
    9. J. J. Kanet, 2007. "New Precedence Theorems for One-Machine Weighted Tardiness," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 579-588, August.
    10. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 43-49.
    11. John J. Kanet, 2014. "One-Machine Sequencing to Minimize Total Tardiness: A Fourth Theorem for Emmons," Operations Research, INFORMS, vol. 62(2), pages 345-347, April.
    12. Su, Ling-Huey & Chen, Chung-Jung, 2008. "Minimizing total tardiness on a single machine with unequal release dates," European Journal of Operational Research, Elsevier, vol. 186(2), pages 496-503, April.
    13. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    14. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    15. Valente, Jorge M.S., 2007. "Improving the performance of the ATC dispatch rule by using workload data to determine the lookahead parameter value," International Journal of Production Economics, Elsevier, vol. 106(2), pages 563-573, April.
    16. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
    17. John J. Kanet & Federico Della Croce & Christos Koulamas & Vincent T’kindt, 2015. "Erratum—One Machine Sequencing to Minimize Total Tardiness: A Fourth Theorem for Emmons," Operations Research, INFORMS, vol. 63(2), pages 351-352, April.
    18. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
    19. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    20. Hanen Akrout & Bassem Jarboui & Patrick Siarry & Abdelwaheb Rebaï, 2012. "A GRASP based on DE to solve single machine scheduling problem with SDST," Computational Optimization and Applications, Springer, vol. 51(1), pages 411-435, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:3:p:313-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.