IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v114y2023ics0305048322001293.html
   My bibliography  Save this article

Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff

Author

Listed:
  • Mansini, Renata
  • Zanella, Marina
  • Zanotti, Roberto

Abstract

This paper deals with a complex multi-objective personnel scheduling problem motivated by a real case. A multi-objective mixed integer linear programming formulation of the problem is proposed. Constraints are classified into mandatory and optional. The work introduces a solution approach, dubbed PRIMP (Prioritize & Improve), that enforces constraint satisfaction by adopting additional objective functions. All the (given and additional) objective functions are lexicographically ordered. The method sequentially solves single-objective problems, according to their priority. Each problem is first processed by an exact solver; if no optimal solution is found within a given time limit, the problem is then addressed heuristically. The proposed multi-stage method is efficient (it takes just a few minutes to produce a daily schedule) and effective, compared both to the manual approach followed by the company and to the method that optimally tackles each single-objective problem by means of a competitive mixed-integer linear programming solver. Experimental results indicate that PRIMP can produce high quality schedules, where a larger number of optional constraints are satisfied and both the global idle time of employees and the waiting time of customers is reduced. The approach is modular and easily adaptable to manage different objective functions and/or constraints.

Suggested Citation

  • Mansini, Renata & Zanella, Marina & Zanotti, Roberto, 2023. "Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff," Omega, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jomega:v:114:y:2023:i:c:s0305048322001293
    DOI: 10.1016/j.omega.2022.102722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322001293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "A new method for optimizing a linear function over the efficient set of a multiobjective integer program," European Journal of Operational Research, Elsevier, vol. 260(3), pages 904-919.
    3. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    4. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    5. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    6. Renata Mansini & Roberto Zanotti, 2020. "Optimizing the physician scheduling problem in a large hospital ward," Journal of Scheduling, Springer, vol. 23(3), pages 337-361, June.
    7. Li, Jingpeng & Burke, Edmund K. & Curtois, Tim & Petrovic, Sanja & Qu, Rong, 2012. "The falling tide algorithm: A new multi-objective approach for complex workforce scheduling," Omega, Elsevier, vol. 40(3), pages 283-293.
    8. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    9. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    10. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    11. J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "Complexity of Scheduling under Precedence Constraints," Operations Research, INFORMS, vol. 26(1), pages 22-35, February.
    12. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    13. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    14. Hanafi, Saïd & Mansini, Renata & Zanotti, Roberto, 2020. "The multi-visit team orienteering problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 515-529.
    15. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    16. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    17. Moosavi, Amirhossein & Ozturk, Onur & Patrick, Jonathan, 2022. "Staff scheduling for residential care under pandemic conditions: The case of COVID-19," Omega, Elsevier, vol. 112(C).
    18. Kadziński, Miłosz & Tervonen, Tommi & Tomczyk, Michał K. & Dekker, Rommert, 2017. "Evaluation of multi-objective optimization approaches for solving green supply chain design problems," Omega, Elsevier, vol. 68(C), pages 168-184.
    19. Dahmen, Sana & Rekik, Monia & Soumis, François & Desaulniers, Guy, 2020. "A two-stage solution approach for personalized multi-department multi-day shift scheduling," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1051-1063.
    20. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    21. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    22. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    23. Peter Brucker & Sigrid Knust & T.C. Cheng & Natalia Shakhlevich, 2004. "Complexity Results for Flow-Shop and Open-Shop Scheduling Problems with Transportation Delays," Annals of Operations Research, Springer, vol. 129(1), pages 81-106, July.
    24. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    2. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    3. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    4. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    5. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    6. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    9. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    10. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    11. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    12. Annear, Luis Mauricio & Akhavan-Tabatabaei, Raha & Schmid, Verena, 2023. "Dynamic assignment of a multi-skilled workforce in job shops: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1109-1125.
    13. da Cunha, Joaquim J. & de Souza, Mauricio C., 2018. "A linearized model for academic staff assignment in a Brazilian university focusing on performance gain in quality indicators," International Journal of Production Economics, Elsevier, vol. 197(C), pages 43-51.
    14. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    15. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    16. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    17. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    18. Tristan Becker, 2020. "A decomposition heuristic for rotational workforce scheduling," Journal of Scheduling, Springer, vol. 23(5), pages 539-554, October.
    19. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    20. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:114:y:2023:i:c:s0305048322001293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.