IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family

  • Maruyama, Yazo
  • Takemura, Akimichi
Registered author(s):

    We give a sufficient condition for admissibility of generalized Bayes estimators of the location vector of spherically symmetric distribution under squared error loss. Compared to the known results for the multivariate normal case, our sufficient condition is very tight and is close to being a necessary condition. In particular, we establish the admissibility of generalized Bayes estimators with respect to the harmonic prior and priors with slightly heavier tail than the harmonic prior. We use the theory of regularly varying functions to construct a sequence of smooth proper priors approaching an improper prior fast enough for establishing the admissibility. We also discuss conditions of minimaxity of the generalized Bayes estimator with respect to the harmonic prior.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4MT5JXG-1/2/ff4b844d9aedc00514a3a7335ed6100a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 99 (2008)
    Issue (Month): 1 (January)
    Pages: 50-73

    as
    in new window

    Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:50-73
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bock, M. E., 1985. "Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 127-147, October.
    2. Maruyama, Yuzo, 1998. "A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 196-205, February.
    3. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    4. Maruyama, Yuzo, 2004. "Stein's idea and minimax admissible estimation of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 320-334, February.
    5. Brandwein, Ann Cohen, 1979. "Minimax estimation of the mean of spherically symmetric distributions under general quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 579-588, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:50-73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.