IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v45y1993i3p551-565.html
   My bibliography  Save this article

Shrinkage estimators of the location parameter for certain spherically symmetric distributions

Author

Listed:
  • Ann Brandwein
  • Stefan Ralescu
  • William Strawderman

Abstract

No abstract is available for this item.

Suggested Citation

  • Ann Brandwein & Stefan Ralescu & William Strawderman, 1993. "Shrinkage estimators of the location parameter for certain spherically symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 551-565, September.
  • Handle: RePEc:spr:aistmt:v:45:y:1993:i:3:p:551-565
    DOI: 10.1007/BF00773355
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00773355
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00773355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bock, M. E., 1985. "Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 127-147, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourdrinier, Dominique & Marchand, Éric & Strawderman, William E., 2019. "On efficient prediction and predictive density estimation for normal and spherically symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 18-25.
    2. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E., 2015. "On improved shrinkage estimators for concave loss," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 241-246.
    3. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman, 2014. "On Predictive Density Estimation for Location Families under Integrated L 2 and L 1 Losses," CIRJE F-Series CIRJE-F-935, CIRJE, Faculty of Economics, University of Tokyo.
    4. Fourdrinier, Dominique & Lemaire, Anne-Sophie, 2002. "Estimation under l1-Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 303-323, November.
    5. Ghannam, Mai & Nkurunziza, Sévérien, 2023. "Tensor Stein-rules in a generalized tensor regression model," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    6. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E., 2015. "On predictive density estimation for location families under integrated squared error loss," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 57-74.
    7. Fourdrinier, Dominique & Strawderman, William E., 2016. "Stokes’ theorem, Stein’s identity and completeness," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 224-231.
    8. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    9. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman, 2014. "On Improved Shrinkage Estimators for Concave Loss," CIRJE F-Series CIRJE-F-936, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fourdrinier, Dominique & Kortbi, Othmane & Strawderman, William E., 2008. "Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 74-93, January.
    2. Xu, Jian-Lun & Izmirlian, Grant, 2006. "Estimation of location parameters for spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 514-525, February.
    3. Kuriki, Satoshi & Takemura, Akimichi, 2000. "Shrinkage Estimation towards a Closed Convex Set with a Smooth Boundary," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 79-111, October.
    4. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    5. Maruyama, Yazo & Takemura, Akimichi, 2008. "Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 50-73, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:45:y:1993:i:3:p:551-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.