IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i2p514-525.html
   My bibliography  Save this article

Estimation of location parameters for spherically symmetric distributions

Author

Listed:
  • Xu, Jian-Lun
  • Izmirlian, Grant

Abstract

Estimation of the location parameters of a px1 random vector with a spherically symmetric distribution is considered under quadratic loss. The conditions of Brandwein and Strawderman [Ann. Statist. 19(1991) 1639-1650] under which estimators of the form dominate are (i) where -h is superharmonic, (ii) is nonincreasing in R, where has a uniform distribution in the sphere centered at with a radius R, and (iii) . In this paper, we not only drop their condition (ii) to show the dominance of over but also obtain a new bound for a which is sometimes better than that obtained by Brandwein and Strawderman. Specifically, the new bound of a is 0

Suggested Citation

  • Xu, Jian-Lun & Izmirlian, Grant, 2006. "Estimation of location parameters for spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 514-525, February.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:514-525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00043-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bock, M. E., 1985. "Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions," Journal of Multivariate Analysis, Elsevier, vol. 17(2), pages 127-147, October.
    2. Brandwein, Ann Cohen, 1979. "Minimax estimation of the mean of spherically symmetric distributions under general quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 579-588, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maruyama, Yazo & Takemura, Akimichi, 2008. "Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 50-73, January.
    2. Shalabh & H. Toutenburg & C. Heumann, 2008. "Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 285-298.
    3. Fourdrinier, Dominique & Kortbi, Othmane & Strawderman, William E., 2008. "Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 74-93, January.
    4. Fourdrinier, Dominique & Strawderman, William E., 2008. "A unified and generalized set of shrinkage bounds on minimax Stein estimates," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2221-2233, November.
    5. Kuriki, Satoshi & Takemura, Akimichi, 2000. "Shrinkage Estimation towards a Closed Convex Set with a Smooth Boundary," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 79-111, October.
    6. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    7. Ann Brandwein & Stefan Ralescu & William Strawderman, 1993. "Shrinkage estimators of the location parameter for certain spherically symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 551-565, September.
    8. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E., 2015. "On improved shrinkage estimators for concave loss," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 241-246.
    9. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman, 2014. "On Improved Shrinkage Estimators for Concave Loss," CIRJE F-Series CIRJE-F-936, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:514-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.