IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Bayes minimax estimation of the multivariate normal mean vector for the case of common unknown variance

  • Zinodiny, S.
  • Strawderman, W.E.
  • Parsian, A.
Registered author(s):

    We investigate the problem of estimating the mean vector [theta] of a multivariate normal distribution with covariance matrix [sigma]2Ip, when [sigma]2 is unknown, and where the loss function is . We find a large class of (proper and generalized) Bayes minimax estimators of [theta], and show that the result of Strawderman (1973) [8] is a special case of our result. Since a large subclass of the estimators found are proper Bayes, and therefore admissible, the class of admissible minimax estimators is substantially enlarged as well.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 102 (2011)
    Issue (Month): 9 (October)
    Pages: 1256-1262

    in new window

    Handle: RePEc:eee:jmvana:v:102:y:2011:i:9:p:1256-1262
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Fourdrinier, Dominique & Kortbi, Othmane & Strawderman, William E., 2008. "Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 74-93, January.
    2. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    3. Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:9:p:1256-1262. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.