IDEAS home Printed from
   My bibliography  Save this article

Simple and efficient improvements of multivariate local linear regression


  • Cheng, Ming-Yen
  • Peng, Liang


This paper studies improvements of multivariate local linear regression. Two intuitively appealing variance reduction techniques are proposed. They both yield estimators that retain the same asymptotic conditional bias as the multivariate local linear estimator and have smaller asymptotic conditional variances. The estimators are further examined in aspects of bandwidth selection, asymptotic relative efficiency and implementation. Their asymptotic relative efficiencies with respect to the multivariate local linear estimator are very attractive and increase exponentially as the number of covariates increases. Data-driven bandwidth selection procedures for the new estimators are straightforward given those for local linear regression. Since the proposed estimators each has a simple form, implementation is easy and requires much less or about the same amount of effort. In addition, boundary corrections are automatic as in the usual multivariate local linear regression.

Suggested Citation

  • Cheng, Ming-Yen & Peng, Liang, 2006. "Simple and efficient improvements of multivariate local linear regression," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1501-1524, August.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1501-1524

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    2. L. Yang & R. Tschernig, 1999. "Multivariate bandwidth selection for local linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 793-815.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1501-1524. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.