IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Duality between matrix variate t and matrix variate V.G. distributions

  • Harrar, Solomon W.
  • Seneta, Eugene
  • Gupta, Arjun K.
Registered author(s):

    The (univariate) t-distribution and symmetric V.G. distribution are competing models [D.S. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990) 511-524; T.W. Epps, Pricing Derivative Securities, World Scientific, Singapore, 2000 (Section 9.4)] for the distribution of log-increments of the price of a financial asset. Both result from scale-mixing of the normal distribution. The analogous matrix variate distributions and their characteristic functions are derived in the sequel and are dual to each other in the sense of a simple Duality Theorem. This theorem can thus be used to yield the derivation of the characteristic function of the t-distribution and is the essence of the idea used by Dreier and Kotz [A note on the characteristic function of the t-distribution, Statist. Probab. Lett. 57 (2002) 221-224]. The present paper generalizes the univariate ideas in Section 6 of Seneta [Fitting the variance-gamma (VG) model to financial data, stochastic methods and their applications, Papers in Honour of Chris Heyde, Applied Probability Trust, Sheffield, J. Appl. Probab. (Special Volume) 41A (2004) 177-187] to the general matrix generalized inverse gaussian (MGIG) distribution.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4HH819F-2/2/a7420052005d3ea2af52a82eaf64273e
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 6 (July)
    Pages: 1467-1475

    as
    in new window

    Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1467-1475
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1467-1475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.