IDEAS home Printed from
   My bibliography  Save this article

Classification of Binary Vectors by Stochastic Complexity


  • Gyllenberg, Mats
  • Koski, Timo
  • Verlaan, Martin


Stochastic complexity is treated as a tool of classification, i.e., of inferring the number of classes, the class descriptions, and the class memberships for a given data set of binary vectors. The stochastic complexity is evaluated with respect to the family of statistical models defined by finite mixtures of multivariate Bernoulli distributions obtained by the principle of maximum entropy. It is shown that stochastic complexity is asymptotically related to the classification maximum likelihood estimate. The formulae for stochastic complexity have an interpretation as minimum code lengths for certain universal source codes for storing the binary data vectors and their assignments into the classes in a classification. There is also a decomposition of the classification uncertainty in a sum of an intraclass uncertainty, an interclass uncertainty, and a special parsimony term. It is shown that minimizing the stochastic complexity amounts to maximizing the information content of the classification. An algorithm of alternating minimization of stochastic complexity is given. We discuss the relation of the method to the AUTOCLASS system of Bayesian classification. The application of classification by stochastic complexity to an extensive data base of strains ofEnterobacteriaceaeis described.

Suggested Citation

  • Gyllenberg, Mats & Koski, Timo & Verlaan, Martin, 1997. "Classification of Binary Vectors by Stochastic Complexity," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 47-72, October.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:1:p:47-72

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Michael Windham, 1987. "Parameter modification for clustering criteria," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 191-214, September.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Mats Gyllenberg & Timo Koski, 1996. "Numerical taxonomy and the principle of maximum entropy," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 213-229, September.
    4. Gilles Celeux & Gérard Govaert, 1991. "Clustering criteria for discrete data and latent class models," Journal of Classification, Springer;The Classification Society, vol. 8(2), pages 157-176, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jukka Corander & Mats Gyllenberg & Timo Koski, 2009. "Bayesian unsupervised classification framework based on stochastic partitions of data and a parallel search strategy," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(1), pages 3-24, June.
    2. Bouguila, Nizar, 2010. "On multivariate binary data clustering and feature weighting," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 120-134, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:1:p:47-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.