IDEAS home Printed from
   My bibliography  Save this article

Concordance measures for multivariate non-continuous random vectors


  • Mesfioui, Mhamed
  • Quessy, Jean-François


A notion of multivariate concordance suitable for non-continuous random variables is defined and many of its properties are established. This allows the definition of multivariate, non-continuous versions of Kendall's tau, Spearman's rho and Spearman's footrule, which are concordance measures. Since the maximum values of these association measures are not +1 in general, a special attention is given to the computation of upper bounds. The latter turn out to be multivariate generalizations of earlier findings made by Neslehová (2007) [9] and Denuit and Lambert (2005) [2]. They are easy to compute and can be estimated from a data set of (possibly) discontinuous random vectors. Corrected versions are considered as well.

Suggested Citation

  • Mesfioui, Mhamed & Quessy, Jean-François, 2010. "Concordance measures for multivariate non-continuous random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2398-2410, November.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2398-2410

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    2. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    3. Manuel Úbeda-Flores, 2005. "Multivariate versions of Blomqvist’s beta and Spearman’s footrule," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 781-788, December.
    4. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    5. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    6. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 37(02), pages 475-515, November.
    7. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Faugeras, Olivier P., 2015. "Maximal coupling of empirical copulas for discrete vectors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 179-186.
    2. Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
    3. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2398-2410. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.