IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i8p1830-1844.html
   My bibliography  Save this article

Quasi-arithmetic means of covariance functions with potential applications to space-time data

Author

Listed:
  • Porcu, Emilio
  • Mateu, Jorge
  • Christakos, George

Abstract

The theory of quasi-arithmetic means represents a powerful tool in the study of covariance functions across space-time. In the present study we use quasi-arithmetic functionals to make inferences about the permissibility of averages of functions that are not, in general, permissible covariance functions. This is the case, e.g., of the geometric and harmonic averages, for which we obtain permissibility criteria. Also, some important inequalities involving covariance functions and preference relations as well as algebraic properties can be derived by means of the proposed approach. In particular, quasi-arithmetic covariances allow for ordering and preference relations, for a Jensen-type inequality and for a minimal and maximal element of their class. The general results shown in this paper are then applied to the study of spatial and spatio-temporal random fields. In particular, we discuss the representation and smoothness properties of a weakly stationary random field with a quasi-arithmetic covariance function. Also, we show that the generator of the quasi-arithmetic means can be used as a link function in order to build a space-time nonseparable structure starting from the spatial and temporal margins, a procedure that is technically sound for those working with copulas. Several examples of new families of stationary covariances obtainable with this procedure are shown. Finally, we use quasi-arithmetic functionals to generalise existing results concerning the construction of nonstationary spatial covariances, and discuss the applicability and limits of this generalisation.

Suggested Citation

  • Porcu, Emilio & Mateu, Jorge & Christakos, George, 2009. "Quasi-arithmetic means of covariance functions with potential applications to space-time data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1830-1844, September.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00047-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    2. Banerjee, Sudipto & Gelfand, Alan E., 2006. "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1487-1501, December.
    3. Banerjee S. & Gelfand A.E. & Sirmans C.F., 2003. "Directional Rates of Change Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 946-954, January.
    4. Porcu, E. & Mateu, J. & Zini, A. & Pini, R., 2007. "Modelling spatio-temporal data: A new variogram and covariance structure proposal," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 83-89, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hristo S. Sendov & Ričardas Zitikis, 2014. "The Shape of the Borwein–Affleck–Girgensohn Function Generated by Completely Monotone and Bernstein Functions," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 67-89, January.
    2. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    3. Christopher J. Geoga & Mihai Anitescu & Michael L. Stein, 2021. "Flexible nonstationary spatiotemporal modeling of high‐frequency monitoring data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    4. Padoan, Simone A. & Bevilacqua, Moreno, 2015. "Analysis of Random Fields Using CompRandFld," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i09).
    5. José-María Montero & Gema Fernández-Avilés & Tiziana Laureti, 2021. "A Local Spatial STIRPAT Model for Outdoor NO x Concentrations in the Community of Madrid, Spain," Mathematics, MDPI, vol. 9(6), pages 1-33, March.
    6. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    7. József Dombi & Jenő Fáró & Tamás Jónás, 2025. "A Group Consensus Measure That Takes into Account the Relative Importance of the Decision-Makers," Mathematics, MDPI, vol. 13(3), pages 1-24, February.
    8. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    9. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    10. Nishiyama, Tomohiro, 2018. "Generalized Bregman and Jensen divergences which include some f-divergences," OSF Preprints ybmdx, Center for Open Science.
    11. repec:osf:osfxxx:ybmdx_v1 is not listed on IDEAS
    12. Fernández-Avilés, G & Montero, JM & Mateu, J, 2011. "Mathematical Genesis of the Spatio-Temporal Covariance Functions," MPRA Paper 35874, University Library of Munich, Germany.
    13. Mehdi Omidi & Mohsen Mohammadzadeh, 2016. "A new method to build spatio-temporal covariance functions: analysis of ozone data," Statistical Papers, Springer, vol. 57(3), pages 689-703, September.
    14. Porcu, Emilio & Zastavnyi, Viktor, 2011. "Characterization theorems for some classes of covariance functions associated to vector valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1293-1301, October.
    15. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An Zhang & Jinhuang Lin & Wenhui Chen & Mingshui Lin & Chengcheng Lei, 2021. "Spatial–Temporal Distribution Variation of Ground-Level Ozone in China’s Pearl River Delta Metropolitan Region," IJERPH, MDPI, vol. 18(3), pages 1-13, January.
    2. Sudipto Banerjee, 2018. "Comments on: Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 773-775, December.
    3. Harrison Quick & Sudipto Banerjee & Bradley P. Carlin, 2015. "Bayesian modeling and analysis for gradients in spatiotemporal processes," Biometrics, The International Biometric Society, vol. 71(3), pages 575-584, September.
    4. Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
    5. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    6. Lambert, Dayton M. & Florax, Raymond J.G.M. & Cho, Seong-Hoon, 2008. "Bandwidth Selection For Spatial Hac And Other Robust Covariance Estimators," Working papers 44258, Purdue University, Department of Agricultural Economics.
    7. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    8. Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
    9. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
    10. Fangpo Wang & Anirban Bhattacharya & Alan E. Gelfand, 2018. "Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 749-772, December.
    11. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    12. Michele Guindani & Alan E. Gelfand, 2006. "Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 159-189, June.
    13. Hatfield, Laura A. & Hoffbeck, Richard W. & Alexander, Bruce H. & Carlin, Bradley P., 2009. "Spatiotemporal and spatial threshold models for relating UV exposures and skin cancer in the central United States," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3001-3015, June.
    14. Porcu, E. & Mateu, J. & Zini, A. & Pini, R., 2007. "Modelling spatio-temporal data: A new variogram and covariance structure proposal," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 83-89, January.
    15. Yuan Wang & Brian P. Hobbs & Jianhua Hu & Chaan S. Ng & Kim‐Anh Do, 2015. "Predictive classification of correlated targets with application to detection of metastatic cancer using functional CT imaging," Biometrics, The International Biometric Society, vol. 71(3), pages 792-802, September.
    16. Miryam S. Merk & Philipp Otto, 2022. "Estimation of the spatial weighting matrix for regular lattice data—An adaptive lasso approach with cross‐sectional resampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    17. Hannah M. Director & Adrian E. Raftery, 2022. "Contour models for physical boundaries enclosing star‐shaped and approximately star‐shaped polygons," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1688-1720, November.
    18. Alexander Kolovos & George Christakos, 2007. "Stastical Tools in Renewable Energy Modeling: Physical Based, Non-Separable Spatiotemporal Covariance Models," Energy and Environmental Modeling 2007 24000023, EcoMod.
    19. Tata Subba Rao & Sourav Das & Georgi N. Boshnakov, 2014. "A Frequency Domain Approach For The Estimation Of Parameters Of Spatio-Temporal Stationary Random Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 357-377, July.
    20. Elena Kotyrlo, 2013. "Stationarity conditions for the spatial first-order and serial second-order model," Letters in Spatial and Resource Sciences, Springer, vol. 6(1), pages 19-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.