IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Quasi-arithmetic means of covariance functions with potential applications to space-time data

  • Porcu, Emilio
  • Mateu, Jorge
  • Christakos, George
Registered author(s):

    The theory of quasi-arithmetic means represents a powerful tool in the study of covariance functions across space-time. In the present study we use quasi-arithmetic functionals to make inferences about the permissibility of averages of functions that are not, in general, permissible covariance functions. This is the case, e.g., of the geometric and harmonic averages, for which we obtain permissibility criteria. Also, some important inequalities involving covariance functions and preference relations as well as algebraic properties can be derived by means of the proposed approach. In particular, quasi-arithmetic covariances allow for ordering and preference relations, for a Jensen-type inequality and for a minimal and maximal element of their class. The general results shown in this paper are then applied to the study of spatial and spatio-temporal random fields. In particular, we discuss the representation and smoothness properties of a weakly stationary random field with a quasi-arithmetic covariance function. Also, we show that the generator of the quasi-arithmetic means can be used as a link function in order to build a space-time nonseparable structure starting from the spatial and temporal margins, a procedure that is technically sound for those working with copulas. Several examples of new families of stationary covariances obtainable with this procedure are shown. Finally, we use quasi-arithmetic functionals to generalise existing results concerning the construction of nonstationary spatial covariances, and discuss the applicability and limits of this generalisation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4VT0X1R-3/2/c6a4841c58c43fbb8f8fdda1af8df573
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 100 (2009)
    Issue (Month): 8 (September)
    Pages: 1830-1844

    as
    in new window

    Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Banerjee S. & Gelfand A.E. & Sirmans C.F., 2003. "Directional Rates of Change Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 946-954, January.
    2. Porcu, E. & Mateu, J. & Zini, A. & Pini, R., 2007. "Modelling spatio-temporal data: A new variogram and covariance structure proposal," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 83-89, January.
    3. Marc Hallin & Thomas S. Ferguson & Christian Genest, 2000. "Kendall's tau for serial dependence," ULB Institutional Repository 2013/2093, ULB -- Universite Libre de Bruxelles.
    4. Banerjee, Sudipto & Gelfand, Alan E., 2006. "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1487-1501, December.
    5. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.