IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i8p1830-1844.html
   My bibliography  Save this article

Quasi-arithmetic means of covariance functions with potential applications to space-time data

Author

Listed:
  • Porcu, Emilio
  • Mateu, Jorge
  • Christakos, George

Abstract

The theory of quasi-arithmetic means represents a powerful tool in the study of covariance functions across space-time. In the present study we use quasi-arithmetic functionals to make inferences about the permissibility of averages of functions that are not, in general, permissible covariance functions. This is the case, e.g., of the geometric and harmonic averages, for which we obtain permissibility criteria. Also, some important inequalities involving covariance functions and preference relations as well as algebraic properties can be derived by means of the proposed approach. In particular, quasi-arithmetic covariances allow for ordering and preference relations, for a Jensen-type inequality and for a minimal and maximal element of their class. The general results shown in this paper are then applied to the study of spatial and spatio-temporal random fields. In particular, we discuss the representation and smoothness properties of a weakly stationary random field with a quasi-arithmetic covariance function. Also, we show that the generator of the quasi-arithmetic means can be used as a link function in order to build a space-time nonseparable structure starting from the spatial and temporal margins, a procedure that is technically sound for those working with copulas. Several examples of new families of stationary covariances obtainable with this procedure are shown. Finally, we use quasi-arithmetic functionals to generalise existing results concerning the construction of nonstationary spatial covariances, and discuss the applicability and limits of this generalisation.

Suggested Citation

  • Porcu, Emilio & Mateu, Jorge & Christakos, George, 2009. "Quasi-arithmetic means of covariance functions with potential applications to space-time data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1830-1844, September.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00047-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porcu, E. & Mateu, J. & Zini, A. & Pini, R., 2007. "Modelling spatio-temporal data: A new variogram and covariance structure proposal," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 83-89, January.
    2. Marc Hallin & Thomas S. Ferguson & Christian Genest, 2000. "Kendall's tau for serial dependence," ULB Institutional Repository 2013/2093, ULB -- Universite Libre de Bruxelles.
    3. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    4. Banerjee, Sudipto & Gelfand, Alan E., 2006. "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1487-1501, December.
    5. Banerjee S. & Gelfand A.E. & Sirmans C.F., 2003. "Directional Rates of Change Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 946-954, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    2. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    3. Porcu, Emilio & Zastavnyi, Viktor, 2011. "Characterization theorems for some classes of covariance functions associated to vector valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1293-1301, October.
    4. Fernández-Avilés, G & Montero, JM & Mateu, J, 2011. "Mathematical Genesis of the Spatio-Temporal Covariance Functions," MPRA Paper 35874, University Library of Munich, Germany.
    5. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).
    6. Mehdi Omidi & Mohsen Mohammadzadeh, 2016. "A new method to build spatio-temporal covariance functions: analysis of ozone data," Statistical Papers, Springer, vol. 57(3), pages 689-703, September.
    7. repec:lrk:eeaart:36_1_7 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1830-1844. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.