IDEAS home Printed from
   My bibliography  Save this article

Interim Bayesian Nash equilibrium on universal type spaces for supermodular games


  • Van Zandt, Timothy


We prove the existence of a greatest and a least interim Bayesian Nash equilibrium for supermodular games of incomplete information. There are two main differences from the earlier proofs and from general existence results for non-supermodular Bayesian games: (a) we use the interim formulation of a Bayesian game, in which each player's beliefs are part of his or her type rather than being derived from a prior; (b) we use the interim formulation of a Bayesian Nash equilibrium, in which each player and every type (rather than almost every type) chooses a best response to the strategy profile of the other players. There are no restrictions on type spaces and action sets may be any compact metric lattices.

Suggested Citation

  • Van Zandt, Timothy, 2010. "Interim Bayesian Nash equilibrium on universal type spaces for supermodular games," Journal of Economic Theory, Elsevier, vol. 145(1), pages 249-263, January.
  • Handle: RePEc:eee:jetheo:v:145:y:2010:i:1:p:249-263

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Heifetz, Aviad & Samet, Dov, 1998. "Topology-Free Typology of Beliefs," Journal of Economic Theory, Elsevier, vol. 82(2), pages 324-341, October.
    2. Ely, Jeffrey C. & Peski, Marcin, 2006. "Hierarchies of belief and interim rationalizability," Theoretical Economics, Econometric Society, vol. 1(1), pages 19-65, March.
    3. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41 World Scientific Publishing Co. Pte. Ltd..
    4. Van Zandt, Timothy & Vives, Xavier, 2007. "Monotone equilibria in Bayesian games of strategic complementarities," Journal of Economic Theory, Elsevier, vol. 134(1), pages 339-360, May.
    5. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    6. David McAdams, 2003. "Isotone Equilibrium in Games of Incomplete Information," Econometrica, Econometric Society, vol. 71(4), pages 1191-1214, July.
    7. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    8. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    9. Athey, Susan, 2001. "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information," Econometrica, Econometric Society, vol. 69(4), pages 861-889, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Luciano De Castro, 2012. "Correlation of Types in Bayesian Games," Discussion Papers 1556, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Morris, Stephen & Shin, Hyun Song & Yildiz, Muhamet, 2016. "Common belief foundations of global games," Journal of Economic Theory, Elsevier, vol. 163(C), pages 826-848.
    3. Eric Hoffmann, 2013. "Global Games Selection in Games with Strategic Substitutes or Complements," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201308, University of Kansas, Department of Economics.
    4. Amir, Rabah & Lazzati, Natalia, 2016. "Endogenous information acquisition in Bayesian games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 163(C), pages 684-698.
    5. Takashi Kamihigashi & Kevin Reffett & Masayuki Yao, 2014. "An Application of Kleene's Fixed Point Theorem to Dynamic Programming: A Note," Discussion Paper Series DP2014-24, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2014.
    6. repec:eee:mateco:v:70:y:2017:i:c:p:154-165 is not listed on IDEAS
    7. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    8. Łukasz Balbus & Paweł Dziewulski & Kevin Reffett & Łukasz Woźny, 2015. "Differential information in large games with strategic complementarities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 201-243, May.
    9. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:145:y:2010:i:1:p:249-263. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.